@article{VMJ_2020_22_3_a2,
author = {G. G. Braichev and V. B. Sherstyukov},
title = {Estimates of indicators of an entire function with negative roots},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {30--46},
year = {2020},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a2/}
}
G. G. Braichev; V. B. Sherstyukov. Estimates of indicators of an entire function with negative roots. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 30-46. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a2/
[1] Korobeinik Yu. F., Selected Works, v 4-kh tomakh, SMI VSC RAS, Vladikavkaz, 2011–2014 (in Russian)
[2] E. Lindelöf, “Mémoire sur la théorie des fonctions entières de genre fini”, Acta Soc. Sci. Fennicae, 31:1 (1902), 1–79 | MR
[3] G. Valiron, “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondence régulièr”, Annales de la Faculté des Scinces de Toulouse: Mathématiques, Sér. 3, 5 (1913), 117–257 | DOI | MR
[4] Levin B. Ya., Distribution of Zeros of Entire Functions, Gostekhizdat, M., 1956 (in Russian)
[5] R. P. Boas, Entire Functions, Acad. Press, N.Y., 1954 | MR | Zbl
[6] G. G. Braichev, V. B. Sherstyukov, “Sharp Bounds for Asymptotic Characteristics of Growth of Entire Functions with Zeros on Given Set”, Fundamentalnaya i Prikladnaya Matematika, 22:1 (2018), 51–97 (in Russian)
[7] G. G. Braichev, V. B. Sherstyukov, “On the Least Possible Type of Entire Functions of Order $\rho\in (0, 1)$ with Positive Zeros”, Izvestiya: Mathematics, 75:1 (2011), 1–27 | DOI | DOI | MR | Zbl
[8] Popov A. Yu., “The Least Possible Type under the Order $\rho 1$ of Canonical Products with Positive Zeros of a Given Upper $\rho$-density”, Vestnik Moskovskogo Universiteta Seriya 1. Matematika. Mekhanika, 2005, no. 1, 31–36 (in Russian) | Zbl
[9] Sherstyukov V. B., “Minimal Value for the Type of an Entire Function of Order $\rho\in (0, 1)$, whose Zeros Lie in an Angle and Have a Prescribed Density”, Ufa Mathematical Journal, 8:1 (2016), 108–120 | DOI | MR
[10] Popov A. Yu., “Development of the Valiron-Levin Theorem on the Least Possible Type of Entire Functions with a Given Upper $\rho$-Density of Roots”, Journal of Mathematical Sciences, 211:4 (2015), 579–616 | DOI | MR | Zbl
[11] Braichev G. G., “On the Lower Indicator of an Entire Function with Roots of Zero Lower Density Lying on a Ray”, Mathematical Notes, 107:6 (2020), 907–919 | DOI | DOI | MR | Zbl
[12] Gol'dberg A. A., Levin B. Ya., Ostrovskiy I. V., “Entire and Meromorphic Functions”, Itogi Nauki i Tekhniki. Seriya «Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya», 85, VINITI, M., 1991, 5–185 (in Russian)
[13] Malyutin K. G., Kabanko M. V., Malyutina T. I., “Integrals and Indicators of Subharmonic Functions, I”, Chebyshevskii Sbornik, 19:2 (2018), 272–303 (in Russian) | DOI | Zbl
[14] Malyutin K. G., Kabanko M. V., Malyutina T. I., “Integrals and Indicators of Subharmonic Functions, II”, Chebyshevskii Sbornik, 20:4 (2019), 236–269 (in Russian) | DOI | MR | Zbl
[15] Azarin V. S., “Example of an Entire Function with Given Indicator and Lower Indicator”, Mathematics of the USSR-Sbornik, 18:4 (1972), 541–558 | DOI | MR | Zbl
[16] Azarin V. S., “Indicators of an Entire Function and the Regularity of the Growth of the Fourier Coefficients of the Logarithm of its Modulus”, Functional Analysis and its Applications, 9:1 (1975), 41–42 | DOI | MR | Zbl
[17] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[18] Kondratyuk A. A., Fridman A. N., “Predel'noe Znachenie Nizhnego Indikatora i Otsenki Snizu dlya Tselykh Funktsiy s Polozhitel'nymi Nulyami”, Ukrainian Mathematical Journal, 24:4 (1972), 488–494 (in Russian)
[19] Kondratyuk A. A., Fridman A. N., “O Nizhnem Indikatore Tseloy Funktsii Nulevogo Roda s Polozhitel'nymi Nulyami”, Ukrainian Mathematical Journal, 24:1 (1972), 106–109 (in Russian) | MR | Zbl
[20] Popov A. Yu., “On the Least Type of an Entire Function of Order $\rho$ with Roots of a Given Upper $\rho$-density Lying on One Ray”, Mathematical Notes, 85:2 (2009), 226–239 | DOI | DOI | MR | Zbl
[21] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. Pures Appl. 6e ser., 6 (1910), 1–136