$v-q\geq 0$, $\kappa >0$, $f \in L^u_v(\mathbb{R})$ and $\mathrm{supp}\,\widehat{f} \subset [-\kappa, \kappa]$. Then $D^mf \in L^p_q(\mathbb{R})$, $\mathrm{supp}\,\widehat{D^m f}=\mathrm{supp}\,\widehat{f}$ and there exists a constant $C$ independent of $f$, $m$, $\kappa$ such that $\|D^mf\|_{L^p_{q}} \leq C m^{-\varrho} \kappa^{m+\varrho} \|f\|_{ L^u_v}, $ for all $m = 1,2,\dots $, where $\varrho=v + \frac{1}{u} -\frac{1}{p} - q>0,$ and the weighted Lebesgue space $L^p_q$ consists of all measurable functions such that $\|f\|_{L^p_q} = \big(\int_{\mathbb{R}} |f(x)|^p |x|^{pq} dx\big)^{1/p} < \infty.$ Moreover, $ \lim_{m\to \infty}\|D^mf\|_{L^p_{q}}^{1/m}= \sup \big\{ |x|: x \in \mathrm{supp}\,\widehat{f}\big \}.$ The advantage of our result is that $m^{-\varrho}$ appears on the right hand side of the inequality ($\varrho >0$), which has never appeared in related articles by other authors. The corresponding result for the $n$-dimensional case is also obtained.
@article{VMJ_2020_22_3_a1,
author = {H. H. Bang and V. N. Huy},
title = {A {Bernstein{\textendash}Nikol'skii} inequality for weighted {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {18--29},
year = {2020},
volume = {22},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a1/}
}
H. H. Bang; V. N. Huy. A Bernstein–Nikol'skii inequality for weighted Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 18-29. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a1/
[1] Bernstein S. N., “Sur l'Ordre de la Meilleure Approximation des Functions Continues par les Polyomes de Degré Donné”, Extrait des Mémoires de l'Académie royale de Belgque, ser. 2, 4, Hayez, Bruxelles, 1912, 103 pp.
[2] DeVore R., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin, 1993 | MR | Zbl
[3] Nikol'skii S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wissensch., 205, Springer-Verlag, Berlin, 1975 | DOI | MR
[4] Nikol'skii S. M., “Inequalities for Entire Functions of Finite Degree and their Application to the Theory of Differentiable Functions of Several Variables”, Proceedings of the Steklov Institute of Mathematics, 38, Acad. Sci. USSR, M., 1951, 244–278 (in Russian)
[5] Frappier C., Rahman Q. I., “On an Inequality of S. Bernstein”, Canadian Journal of Mathematics, 34 (1982), 932–944 | DOI | MR | Zbl
[6] Ganzburg M. I., “Sharp constants in V. A. Markov–Bernstein Type Inequalities Of Different Metrics”, Journal of Approximation Theory, 215 (2017), 92–105 | DOI | MR | Zbl
[7] Ganzburg M. I., “Sharp Constants of Approximation Theory. I. Multivariate Bernstein–Nikolskii Type Inequalities”, Journal of Fourier Analysis and Applications, 26 (2020), 11 | DOI | MR | Zbl
[8] Ganzburg M. I., Tikhonov S. Yu., “On Sharp Constants in Bernstein–Nikolskii Inequalities”, Constructive Approximation, 45 (2017), 449–466 | DOI | MR | Zbl
[9] Platonov S. S., “Bessel Harmonic Analysis and the Approximation of Functions on a Half-Line”, Izvestiya: Mathematics, 71:5 (2007), 1001–1048 | DOI | MR | Zbl
[10] Rahman Q. I., Schmeisser G., “$L^p$ Inequalities for Entire Functions of Exponential Type”, Transactions of the American Mathematical Society, 320 (1990), 91–103 | DOI | MR | Zbl
[11] Rahman Q. I., Tariq Q. M., “On Bernstein's Inequality for Entire Functions of Exponential Type”, Computational Methods and Function Theory, 7 (2007), 167–184 | DOI | MR | Zbl
[12] Nessel R. J., Wilmes G., “Nikol'skii-Type Inequalities in Connection with Regular Spectral Measures”, Acta Mathematica, 33 (1979), 169–182 | MR | Zbl
[13] Nessel R. J., Wilmes G., “Nikol'skii-Type Inequalities for Trigonometric Polynomials and Entire Functions of Exponential Type”, Journal of the Australian Mathematical Society, 25 (1978), 7–18 | DOI | MR | Zbl
[14] Nikol'skii S. M., “Some Inequalities for Entire Functions of Finite Degree and their Application”, Doklady Akademii Nauk SSSR, 76 (1951), 785–788 (in Russian) | MR
[15] Triebel H., “General Function Spaces, II: Inequalities of Plancherel-Polya Nikolskii-type, $L^p$-Space of Analytic Functions: $0 p\leq \infty$”, Journal of Approximation Theory, 19 (1977), 154–175 | DOI | MR | Zbl
[16] Triebel H., Theory of Function Spaces, Birkhauser, Basel–Boston–Stuttgart, 1983 | MR | Zbl
[17] Bang H. H., Huy V. N., “New Results Concerning the Bernstein–Nikol'skii Inequality”, Advances in Mathematics Reseach, 16 (2011), 177–191 | MR
[18] Bang H. H., “A Property of Infinitely Differentiable Functions”, Proceedings of the American Mathematical Society, 108 (1990), 73–76 | DOI | MR | Zbl
[19] Kerman R. A., “Convolution Theorems with Weights”, Transactions of the American Mathematical Society, 280:1 (1983), 207–219 | DOI | MR | Zbl
[20] Vladimirov V. S., Methods of the Theory of Generalized Functions, Taylor Francis, London–New York, 2002 | MR | Zbl