@article{VMJ_2020_22_3_a0,
author = {A. V. Abanin and Yu. V. Korablina},
title = {Boundedness of classical operators in weighted spaces of holomorphic functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--17},
year = {2020},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/}
}
TY - JOUR AU - A. V. Abanin AU - Yu. V. Korablina TI - Boundedness of classical operators in weighted spaces of holomorphic functions JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 5 EP - 17 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/ LA - ru ID - VMJ_2020_22_3_a0 ER -
A. V. Abanin; Yu. V. Korablina. Boundedness of classical operators in weighted spaces of holomorphic functions. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/
[1] P. T. Tien, “Translation operators on weighted spaces of entire functions”, Proc. Am. Math. Soc., 145:2 (2017), 805–815 | DOI | MR | Zbl
[2] A. V. Abanin, P. T. Tien, “Invariant subspaces for classical operators on weighted spaces of holomorphic functions”, Integr. Equ. Oper. Theory, 89:3 (2017), 409–438 | DOI | MR | Zbl
[3] N. Zorboska, “Intrinsic operators from holomorphic function spaces to growth spaces”, Integr. Equ. Oper. Theory, 87:4 (2017), 581–600 | DOI | MR | Zbl
[4] K. D. Bierstedt, J. Bonet, J. Taskinen, “Associated weights and spaces of holomorphic functions”, Studia Math., 127:2 (1998), 137–168 | DOI | MR | Zbl
[5] A. V. Abanin, P. T. Tien, “Differentiation and integration operators on weighted Banach spaces of holomorphic functions”, Math. Nachr., 290:8-9 (2017), 1144–1162 | DOI | MR | Zbl
[6] K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics, 263, Springer, New York, 2012, 346 pp. | DOI | MR | Zbl
[7] Baladai R. A., Khabibullin B. N., “From Integral Estimates of Functions to Uniform and Locally Averaged Ones”, Russian Mathematics, 61 (2017), 11–20 | DOI | MR | Zbl
[8] O. Constantin, J. A. Peláez, “Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces”, J. Geom. Anal., 26:2 (2016), 1109–1154 | DOI | MR | Zbl
[9] J. Bonet, J. Taskinen, “A note about Volterra operators on weighted Banach spaces of entire functions”, Math. Nachr., 288:11-12 (2015), 1216–1225 | DOI | MR | Zbl
[10] T. Mengestie, S.-I. Ueki, “Integral, differential and multiplication operators on generalized Fock spaces”, Complex Anal. Oper. Theory, 13:3 (2019), 935–953 | DOI | MR