Boundedness of classical operators in weighted spaces of holomorphic functions
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish some criteria of the boundedness for some classical operators acting from an abstract Banach space of holomorphic functions in a complex domain to a weighted space of the same functions equipped with sup-norm. It is presented a further development of Zorboska’s idea that conditions of the boundedness of weighted composition operators including multiplication and usual composition ones and Volterra operator can be formulated in terms of $\delta$-functions norms in the corresponding dual spaces. As a consequence we obtain criteria of the boundedness of the above mentioned operators on generalized Bergman and Fock spaces. In particular cases it is possible to state these criteria in terms of weights defining spaces and functions giving the composition operator. In comparison with the previous results we essentially extend the class of weighted holomorphic spaces in the unit disc that admits a realization of Zorboska’s method. In addition, we develop an extension of this approach to weighted spaces of entire functions. In this relation we introduce the class of almost harmonic weights and obtain some estimates of $\delta$-functions norms in spaces dual to the generalized Fock spaces giving by almost harmonic weights.
@article{VMJ_2020_22_3_a0,
     author = {A. V. Abanin and Yu. V. Korablina},
     title = {Boundedness of classical operators in weighted spaces of holomorphic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--17},
     year = {2020},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - Yu. V. Korablina
TI  - Boundedness of classical operators in weighted spaces of holomorphic functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 5
EP  - 17
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/
LA  - ru
ID  - VMJ_2020_22_3_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A Yu. V. Korablina
%T Boundedness of classical operators in weighted spaces of holomorphic functions
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 5-17
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/
%G ru
%F VMJ_2020_22_3_a0
A. V. Abanin; Yu. V. Korablina. Boundedness of classical operators in weighted spaces of holomorphic functions. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a0/

[1] P. T. Tien, “Translation operators on weighted spaces of entire functions”, Proc. Am. Math. Soc., 145:2 (2017), 805–815 | DOI | MR | Zbl

[2] A. V. Abanin, P. T. Tien, “Invariant subspaces for classical operators on weighted spaces of holomorphic functions”, Integr. Equ. Oper. Theory, 89:3 (2017), 409–438 | DOI | MR | Zbl

[3] N. Zorboska, “Intrinsic operators from holomorphic function spaces to growth spaces”, Integr. Equ. Oper. Theory, 87:4 (2017), 581–600 | DOI | MR | Zbl

[4] K. D. Bierstedt, J. Bonet, J. Taskinen, “Associated weights and spaces of holomorphic functions”, Studia Math., 127:2 (1998), 137–168 | DOI | MR | Zbl

[5] A. V. Abanin, P. T. Tien, “Differentiation and integration operators on weighted Banach spaces of holomorphic functions”, Math. Nachr., 290:8-9 (2017), 1144–1162 | DOI | MR | Zbl

[6] K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics, 263, Springer, New York, 2012, 346 pp. | DOI | MR | Zbl

[7] Baladai R. A., Khabibullin B. N., “From Integral Estimates of Functions to Uniform and Locally Averaged Ones”, Russian Mathematics, 61 (2017), 11–20 | DOI | MR | Zbl

[8] O. Constantin, J. A. Peláez, “Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces”, J. Geom. Anal., 26:2 (2016), 1109–1154 | DOI | MR | Zbl

[9] J. Bonet, J. Taskinen, “A note about Volterra operators on weighted Banach spaces of entire functions”, Math. Nachr., 288:11-12 (2015), 1216–1225 | DOI | MR | Zbl

[10] T. Mengestie, S.-I. Ueki, “Integral, differential and multiplication operators on generalized Fock spaces”, Complex Anal. Oper. Theory, 13:3 (2019), 935–953 | DOI | MR