Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Given two positive integers
$\alpha$ and $\beta$, for arbitrary continuous function $f(x)$ on the segment $[-1, 1]$
we construct disrete Fourier sums $S_{n,N}^{\alpha,\beta}(f,x)$ on system polynomials
$\big\{\hat{p}_{k,N}^{\alpha,\beta}(x)\big\}_{k=0}^{N-1}$ forming an orthonormals system
on any finite non-uniform set $\Omega_N=\{x_j\}_{j=0}^{N-1}$ of $N$ points from segment
$[-1, 1]$ with Jacobi type weight. The approximation properties of the
corresponding partial sums $S_{n,N}^{\alpha,\beta}(f,x)$ of order $n\leq{N-1}$ in the
space of continuous functions $C[-1, 1]$ are investigated. Namely,
for a Lebesgue function in $L_{n,N}^{\alpha,\beta}(x)$, a two-sided pointwise
estimate of discrete Fourier sums with $n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$,
$\lambda=\max\{\alpha, \beta\}$, $\delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$ is obtained. The
problem of convergence of $S_{n,N}^{\alpha,\beta}(f,x)$ to $f(x)$ is also investigated.
In particular, an estimate is obtained of the deviation of the partial sum
$S_{n,N}^{\alpha,\beta}(f,x)$ from $f(x)$ for
$n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$, depending on $n$ and the position of a
point $x$ in $[-1, 1].$
@article{VMJ_2020_22_2_a3,
author = {A. A. Nurmagomedov},
title = {Approximation properties of discrete {Fourier} sums in polynomials orthogonal on non-uniform grids},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {34--47},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/}
}
TY - JOUR AU - A. A. Nurmagomedov TI - Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 34 EP - 47 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/ LA - ru ID - VMJ_2020_22_2_a3 ER -
A. A. Nurmagomedov. Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/