Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Given two positive integers $\alpha$ and $\beta$, for arbitrary continuous function $f(x)$ on the segment $[-1, 1]$ we construct disrete Fourier sums $S_{n,N}^{\alpha,\beta}(f,x)$ on system polynomials $\big\{\hat{p}_{k,N}^{\alpha,\beta}(x)\big\}_{k=0}^{N-1}$ forming an orthonormals system on any finite non-uniform set $\Omega_N=\{x_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with Jacobi type weight. The approximation properties of the corresponding partial sums $S_{n,N}^{\alpha,\beta}(f,x)$ of order $n\leq{N-1}$ in the space of continuous functions $C[-1, 1]$ are investigated. Namely, for a Lebesgue function in $L_{n,N}^{\alpha,\beta}(x)$, a two-sided pointwise estimate of discrete Fourier sums with $n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$, $\lambda=\max\{\alpha, \beta\}$, $\delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$ is obtained. The problem of convergence of $S_{n,N}^{\alpha,\beta}(f,x)$ to $f(x)$ is also investigated. In particular, an estimate is obtained of the deviation of the partial sum $S_{n,N}^{\alpha,\beta}(f,x)$ from $f(x)$ for $n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$, depending on $n$ and the position of a point $x$ in $[-1, 1].$
@article{VMJ_2020_22_2_a3,
     author = {A. A. Nurmagomedov},
     title = {Approximation properties of discrete {Fourier} sums in polynomials  orthogonal on non-uniform grids},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {34--47},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - Approximation properties of discrete Fourier sums in polynomials  orthogonal on non-uniform grids
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 34
EP  - 47
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/
LA  - ru
ID  - VMJ_2020_22_2_a3
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T Approximation properties of discrete Fourier sums in polynomials  orthogonal on non-uniform grids
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 34-47
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/
%G ru
%F VMJ_2020_22_2_a3
A. A. Nurmagomedov. Approximation properties of discrete Fourier sums in polynomials  orthogonal on non-uniform grids. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/