Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given two positive integers $\alpha$ and $\beta$, for arbitrary continuous function $f(x)$ on the segment $[-1, 1]$ we construct disrete Fourier sums $S_{n,N}^{\alpha,\beta}(f,x)$ on system polynomials $\big\{\hat{p}_{k,N}^{\alpha,\beta}(x)\big\}_{k=0}^{N-1}$ forming an orthonormals system on any finite non-uniform set $\Omega_N=\{x_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with Jacobi type weight. The approximation properties of the corresponding partial sums $S_{n,N}^{\alpha,\beta}(f,x)$ of order $n\leq{N-1}$ in the space of continuous functions $C[-1, 1]$ are investigated. Namely, for a Lebesgue function in $L_{n,N}^{\alpha,\beta}(x)$, a two-sided pointwise estimate of discrete Fourier sums with $n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$, $\lambda=\max\{\alpha, \beta\}$, $\delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$ is obtained. The problem of convergence of $S_{n,N}^{\alpha,\beta}(f,x)$ to $f(x)$ is also investigated. In particular, an estimate is obtained of the deviation of the partial sum $S_{n,N}^{\alpha,\beta}(f,x)$ from $f(x)$ for $n=O\Big(\delta_N^{-\frac{1}{(\lambda+3)}}\Big)$, depending on $n$ and the position of a point $x$ in $[-1, 1].$
@article{VMJ_2020_22_2_a3,
     author = {A. A. Nurmagomedov},
     title = {Approximation properties of discrete {Fourier} sums in polynomials orthogonal on non-uniform grids},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {34--47},
     year = {2020},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 34
EP  - 47
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/
LA  - ru
ID  - VMJ_2020_22_2_a3
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 34-47
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/
%G ru
%F VMJ_2020_22_2_a3
A. A. Nurmagomedov. Approximation properties of discrete Fourier sums in polynomials orthogonal on non-uniform grids. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 34-47. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a3/

[1] Szego G., Orthogonal Polynomials, Amer. Math. Soc., New York–Providence, RI, 1939, 440 pp. | MR

[2] Rau H., “Uber die Lebesgueschen Konstanten der Reihentwicklungen nach Jacobischen Polynomen”, Journ. fur Math., 161 (1929), 237–254 | MR | Zbl

[3] Gronwall T., “Uber die Laplacische Reihe”, Math. Ann., 74:2 (1913), 213–270 | DOI | MR | Zbl

[4] Agakhanov S. A., Natanson G. I., “Approximation of Functions by Fourier–Jacobi Sums”, Dokl. Akad. Nauk SSSR, 166 (1966), 9–10 (in Russian) | MR | Zbl

[5] Agakhanov S. A., Natanson G. I., “The Lebesgue Function for Fourier–Jacobi Sums”, Vestn. Leningr. Univ., 1 (1968), 11–13 (in Russian) | MR | Zbl

[6] Sharapudinov I. I., “Convergence of the Method Of Least Squares”, Math. Notes, 53 (1993), 335–344 | DOI | MR | Zbl

[7] Nurmagomedov A. A., “Polynomials, Orthogonal on Non-Uniform Grids”, Izv. Saratovsk. Univ. Nov. Ser. Matem., Mekhan., Informatika, 11:3-2 (2011), 29–42 (in Russian) | DOI

[8] Nurmagomedov A. A., “Convergence of Fourier Sums in Polynomials Orthogonal on Arbitrary Grids”, Russian Mathematics, 56 (2012), 52–54 | DOI | MR | Zbl

[9] Nurmagomedov A. A., Rasulov N. K., “Two-Sided Estimates of Fourier Sums Lebesgue Functions with Respect to Polynomials Orthogonal on Nonuniform Grids”, Vestnik St. Petersburg University, Mathematics, 51:3 (2018), 249–259 | DOI | DOI | MR | Zbl

[10] Nurmagomedov A. A., Nurmagomedov I. A., “Obout Convergence of Fourier Sums on Polynomials Orthogonal on Arbitrary Grids”, Theory of Functions, its Applications and Related Matters, Tr. mat. ts. im. N. I. Lobachevskogo, 57, Kazan, 2019, 254–257 (in Russian)

[11] Nurmagomedov A. A., “Asymptotic Properties of Polynomials $\hat{p}_n^{\alpha,\beta}(x),$ Orthogonal on any Sets in the Case of Integers $\alpha$ and $\beta$”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:2 (2010), 10–19 (in Russian) | DOI | MR

[12] Korkmasov F. M., “Approximate Properties of the de la Vallee Poussin Means for the Discrete Fourier–Jacobi Sums”, Siberian Mathematical Journal, 45 (2004), 273–293 | DOI | MR | Zbl

[13] Sharapudinov I. I., Mixed Series of Orthogonal Polynomials. Theory and Applications, Daghestan Scientific Centre of RAS, Makhachkala, 2004, 276 pp. (in Russian)

[14] Sharapudinov I. I., “Boundednes in $C[-1, 1]$ of the de la Vallee-Poussin Means for the Discrete Fourier–Jacobi Sums”, Sbornik: Mathematics, 187:1 (1996), 141–160 | DOI | DOI | MR | Zbl

[15] Alexits G., Konvergenzprobleme der Orthogonalreihen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960 | MR | MR | Zbl

[16] Badkov V. M., “Two-Sided Estimations for the Lebesgue Function and the Remainder of the Fourier Series with Respect to Orthogonal Polynomials”, Approximation in Concrete and Abstract Banach Spaces, Akad. Nauk SSSR. Ural'sk. Nauchn. Tsentr, Sverdlovsk, 1987, 31–45 (in Russian) | MR

[17] Daugavet I. K., Rafalson S. Z., “About of Some Inequalities for Algebraic Polynomial”, Vestn. Leningr. Gos. Univ., 1974, no. 19, 18–24 (in Russian) | Zbl

[18] Simonov I. E., “Sharp Markov Brothers Type Inequality in the Spaces $L_p, L_1$ on the a Closed Interval”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 282–290 (in Russian)