Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 24-33

Voir la notice de l'article provenant de la source Math-Net.Ru

If a distance-regular graph $\Gamma$ of diameter $3$ contains a maximal locally regular $1$-code perfect with respect to the last neighborhood, then $\Gamma$ has an intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ or ${\{a(p+1),(a+1)p,c;1,c,ap\}}$, where $a=a_3$, $c=c_2$, $p=p^3_{33}$ (Jurisic and Vidali). In the first case, $\Gamma$ has an eigenvalue $\theta_2=-1$ and $\Gamma_3$ is a pseudo-geometric graph for $GQ(p+1,a)$. If $c=a-1=q$, $p=q-2$, then $\Gamma$ has an intersection array $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$, $q>6$. The orders and subgraphs of fixed points of automorphisms of a hypothetical distance-regular graph with intersection array $\{48,35,9;1,7,40\}$ ($q=7$) are studied in the paper. Let $G={\rm Aut} (\Gamma)$ be an insoluble group acting transitively on the set of vertices of the graph $\Gamma$, $K=O_7(G)$, $\bar T$ be the socle of the group $\bar G=G/K$. Then $\bar T$ contains the only component $\bar L$, $\bar L$ that acts exactly on $K$, $\bar L\cong L_2(7),A_5,A_6,PSp_4(3)$ and for the full the inverse image of $L$ of the group $\bar L$ we have $L_a=K_a\times O_{7'}(L_a)$ and $|K|=7^3$ in the case of $\bar L\cong L_2(7)$, $|K|=7^4$ otherwise.
@article{VMJ_2020_22_2_a2,
     author = {A. A. Makhnev and V. V. Bitkina and A. K. Gutnova},
     title = {Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {24--33},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. V. Bitkina
AU  - A. K. Gutnova
TI  - Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 24
EP  - 33
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/
LA  - ru
ID  - VMJ_2020_22_2_a2
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. V. Bitkina
%A A. K. Gutnova
%T Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 24-33
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/
%G ru
%F VMJ_2020_22_2_a2
A. A. Makhnev; V. V. Bitkina; A. K. Gutnova. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 24-33. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/