@article{VMJ_2020_22_2_a2,
author = {A. A. Makhnev and V. V. Bitkina and A. K. Gutnova},
title = {Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {24--33},
year = {2020},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/}
}
TY - JOUR
AU - A. A. Makhnev
AU - V. V. Bitkina
AU - A. K. Gutnova
TI - Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
JO - Vladikavkazskij matematičeskij žurnal
PY - 2020
SP - 24
EP - 33
VL - 22
IS - 2
UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/
LA - ru
ID - VMJ_2020_22_2_a2
ER -
%0 Journal Article
%A A. A. Makhnev
%A V. V. Bitkina
%A A. K. Gutnova
%T Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 24-33
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/
%G ru
%F VMJ_2020_22_2_a2
A. A. Makhnev; V. V. Bitkina; A. K. Gutnova. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 24-33. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a2/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–N. Y., 1989 | DOI | MR | Zbl
[2] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl
[3] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[4] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR | Zbl
[5] Gavrilyuk A. L., Makhnev A. A., “On Automorphisms of Distance-Regular Graphs with Intersection Array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[6] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl