On unbounded integral operators with quasisymmetric kernels
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 18-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1935 von Neumann established that a limit spectrum of self-adjoint Carleman integral operator in $L_2$ contains $0$. This result was generalized by the author on nonself-adjoint operators: the limit spectrum of the adjoint of Carleman integral operator contains $0$. Say that a densely defined in $L_2$ linear operator $A$ satisfies the generalized von Neumann condition if $0$ belongs to the limit spectrum of adjoint operator $A^{\ast}$. Denote by $B_0$ the class of all linear operators in $L_2$ satisfying a generalized von Neumann condition. The author proved that each bounded integral operator, defined on $L_2$, belongs to $B_0$. Thus, the question arises: is an analogous assertion true for all unbounded densely defined in $L_2$ integral operators? In this note, we give a negative answer on this question and we establish a sufficient condition guaranteeing that a densely defined in $L_2$ unbounded integral operator with quasisymmetric lie in $B_0$.
@article{VMJ_2020_22_2_a1,
     author = {V. B. Korotkov},
     title = {On unbounded integral operators with quasisymmetric kernels},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {18--23},
     year = {2020},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a1/}
}
TY  - JOUR
AU  - V. B. Korotkov
TI  - On unbounded integral operators with quasisymmetric kernels
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 18
EP  - 23
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a1/
LA  - ru
ID  - VMJ_2020_22_2_a1
ER  - 
%0 Journal Article
%A V. B. Korotkov
%T On unbounded integral operators with quasisymmetric kernels
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 18-23
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a1/
%G ru
%F VMJ_2020_22_2_a1
V. B. Korotkov. On unbounded integral operators with quasisymmetric kernels. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 18-23. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a1/

[1] Korotkov V. B., “On Some Properties of Partially Integral Operators”, Dokl. Akad. Nauk SSSR, 217:4 (1974), 752–754 (in Russian) | MR | Zbl

[2] Korotkov V. B., Integral Operators, Izd-vo Novosib. Gos. Un-ta, Novosibirsk, 1977, 68 pp. (in Russian) | MR

[3] Halmos P. R., Sunder V. S., Bounded Integral Operators on $L^2$ Spaces, Springer Verlag, Berlin–Heidelberg–New York, 1978, 134 pp. | MR

[4] Korotkov V. B., “On One Class of Linear Operators in $L_2$”, Siberian Mathematical Journal, 60:1 (2019), 89–92 | DOI | DOI | MR | Zbl

[5] Korotkov V. B., Integral Operators, Nauka, Novosibirsk, 1983, 224 pp. (in Russian) | MR

[6] Korotkov V. B., “On Partially Measure Compact Unbounded Linear Operators in $L_2$”, Vladikavkaz. Math. J., 18:1 (2016), 36–41 (in Russian) | DOI | MR | Zbl

[7] Korotkov V. B., “Integral Equations of the Third Kind with Unbounded Operators”, Siberian Mathematical Journal, 58:2 (2017), 255–263 | DOI | DOI | MR | Zbl