@article{VMJ_2020_22_1_a2,
author = {A. I. Bulygin},
title = {About some properties of similarly homogeneous $\mathbb {R}$-trees},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {32--42},
year = {2020},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a2/}
}
A. I. Bulygin. About some properties of similarly homogeneous $\mathbb {R}$-trees. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a2/
[1] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, v. 4, SMI VSC RAS, Vladikavkaz, 2012, 414 pp. (in Russian) | MR
[2] Tits J., “A “ theorem of Lie-Kolchin” for trees”, Contributions to Algebra, Academic Press, N. Y., 1977, 377–388 | DOI | MR
[3] Chiswell I., Introduction to $\Lambda$-trees, Queen Mary Westfield College, University of London, U.K., 2001, 328 pp. | MR
[4] Alexandrov A. D., On a Generalization of Riemannian Geometry, Jahresber. Humb. Univ., Berlin, 1955
[5] Bridson M., Haefliger A., Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999, 643 pp. | DOI | MR | Zbl
[6] Dyubina A., Polterovich I., “Explicit constructions of universal $\mathbb{R}$-trees and asymptotic geometry of hyperbolic spaces”, Bull. Lond. Math. Soc., 33:6 (2001), 727–734 | DOI | MR | Zbl
[7] Berestovskii V. N., Plaut C., “Covering $\mathbb{R}$-trees, $\mathbb{R}$-free groups and dendrites”, Advances in Mathematics, 224:5 (2010), 1765–1783 | DOI | MR | Zbl
[8] Andreev P. D., “Semilinear Metric Semilattices on $\mathbb R$-Trees”, Russian Mathematics (Izvestiya VUZ. Matematika), 51:6 (2007), 1–10 | DOI | MR | Zbl
[9] Andreev P. D., Bulygin A. I., “On the Vertical Similarly Homogeneous $\mathbb{R}$-Trees”, Lobachevskii J. Math., 40:2 (2019), 127–139 | DOI | MR | Zbl
[10] Berestovskii V. N., “Similarly Homogeneous Locally Complete Spaces with an Intrinsic Metric”, Russian Mathematics (Izvestiya VUZ. Matematika), 48:11 (2004), 1–19 (in Russian) | Zbl
[11] Bestvina M., “$\mathbb{R}$-trees in topology, geometry and group theory”, Handbook of geometric topology, eds. R. J. Daverman, R. B. Sher, Elsevier Science, Amsterdam, 2002, 55–91 | MR | Zbl
[12] Aleksandrov A. D., “Mappings of Families of Sets”, Doklady Akademii Nauk SSSR, 190:3 (1970), 502–505 (in Russian) | Zbl
[13] Bogatyj S. A., Frolkina O. D., “Isometricity of Mappings Preserving Perimeter”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika Mekhanika, 2004, no. 1, 3–11 (in Russian)
[14] Berestovskii V. N., “Pathologies in Aleksandrov spaces of curvature bounded above”, Siber. Adv. Math., 12:4 (2002), 1–18 | MR | Zbl
[15] Kozyrev S. V., “Methods and Applications of Ultrametric and $p$-Adic Analysis: From Wavelet Theory to Biophysics”, Proceedings of the Steklov Institute of Mathematics, 274, suppl. 1 (2011), S1–S84 | DOI | DOI | MR | Zbl