@article{VMJ_2020_22_1_a1,
author = {Z. V. Besaeva and A. F. Tedeev},
title = {The decay rate of the solution to the {Cauchy} problem for doubly nonlinear parabolic equation with absorption},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {12--32},
year = {2020},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a1/}
}
TY - JOUR AU - Z. V. Besaeva AU - A. F. Tedeev TI - The decay rate of the solution to the Cauchy problem for doubly nonlinear parabolic equation with absorption JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 12 EP - 32 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a1/ LA - ru ID - VMJ_2020_22_1_a1 ER -
%0 Journal Article %A Z. V. Besaeva %A A. F. Tedeev %T The decay rate of the solution to the Cauchy problem for doubly nonlinear parabolic equation with absorption %J Vladikavkazskij matematičeskij žurnal %D 2020 %P 12-32 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a1/ %G ru %F VMJ_2020_22_1_a1
Z. V. Besaeva; A. F. Tedeev. The decay rate of the solution to the Cauchy problem for doubly nonlinear parabolic equation with absorption. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 12-32. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a1/
[1] Tedeev A. F., “The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations”, Appl. Anal., 86:6 (2007), 755–782 | DOI | MR | Zbl
[2] Andreucci D., Tedeev A. F., Ughi M., “The Cauchy problem for degenerate parabolic equations with source and damping”, Ukr. Math. Bull., 1:1 (2004), 1–23 | MR
[3] Ben-Artzi B., Koch H., “Decay of mass for a semilinear parabolic equation”, Commun. Partial Differ. Equ., 24:5–6 (1999), 869–881 | DOI | MR | Zbl
[4] Skrypnik I., Tedeev A. F., “Decay of the mass of the solution to Cauchy problem of the degenerate parabolic equation with nonlinear potential”, Complex Var. Elliptic Equ., 63:1 (2018), 90–115 | DOI | MR | Zbl
[5] Kamin S., Rosenau P., “Propagation of thermal waves in an inhomogeneous medium”, Commun. Pure Appl. Math., 34:6 (1981), 831–852 | DOI | MR | Zbl
[6] Kamin S., Rosenau P., “Nonlinear diffusion in finite mass medium”, Commun. Pure Appl. Math., 35:1 (1982), 113–127 | DOI | MR | Zbl
[7] Kamin S., Kersner R., “Disappearance of interfaces in finite time”, Mechanica, 28:2 (1993), 117–120 | DOI | MR | Zbl
[8] Eidus D., Kamin S., “The filtration equation in class of functions decreasing at infinity”, Proc. Amer. Math. Soc., 120:3 (1994), 825–830 | DOI | MR | Zbl
[9] Galaktionov V. A., Kamin S., Kersner R., Vazquez J. L., “Intermediate asymptotics for inhomogeneous nonlinear heat conduction”, J. Math. Sci., 120:3 (2004), 1277–1294 | DOI | MR
[10] Guedda M., Hihorst D., Peletier M. A., “Disappearing interfaces in nonlinear diffussion”, Adv. Math. Sci. Appl., 7:2 (1997), 695–710 | MR | Zbl
[11] Martynenko A. V., Tedeev A. F., “Cauchy Problem for Quasilinear Parabolic Equation with a Source Term and an Inhomogeneous Density”, Computational Mathematics and Mathematical Physics, 47:2 (2007), 238–248 | DOI | MR | Zbl
[12] Martynenko A. V., Tedeev A. F., “On the Behavior of Solutions to the Cauchy Problem for a Degenerate Parabolic Equation with Inhomogeneous Density and a Source”, Computational Mathematics and Mathematical Physics, 48:7 (2008), 1145–1160 | DOI | MR
[13] Reyes G., Vazquez J. L., “The inhomogeneous PME in several space dimensions. existence and uniqueness of finite energy solutions”, Commun. Pure Appl. Anal., 7:6 (2008), 1275–1294 | DOI | MR
[14] Reyes G., Vazquez J. L., “Long time behavior for the inhomogeneous PMI in a medium with slowly decaying density”, Commun. Pure Appl. Anal., 8:2 (2009), 493–508 | DOI | MR | Zbl
[15] Kamin S., Reyes G., Vazquez J. L., “Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density”, Discrete Contin. Dyn. Syst. A, 26:2 (2010), 521–549 | DOI | MR | Zbl
[16] Benachour S., Laurentcot Ph., “Global Solutions to viscous Hamilton–Jacobi equations with irregular initial data”, Commun. Partial Differ. Equ., 24:11–12 (1999), 1999–2021 | DOI | MR | Zbl
[17] Di Benedetto E., Degenerate parabolic equations, Springer–Verlag, New York, 1993, 387 pp. | MR
[18] Andreucci D., Tedeev A. F., “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differ. Equ., 10:1 (2005), 89–120 | MR | Zbl