Three theorems on Vandermond matrices
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebraic questions related to the discrete Fourier transform defined using symmetric Vandermonde matrices $\Lambda$. The main attention in the first two theorems is given to the development of independent formulations of the size $N\times N$ of the matrix $\Lambda$ and explicit formulas for the elements of the matrix $\Lambda$ using the roots of the equation $\Lambda^N = 1$. The third theorem considers rational functions $f(\lambda)$, $\lambda\in \mathbb{C}$, satisfying the condition of “materiality” $f(\lambda)=f(\frac{1}{\lambda})$, on the entire complex plane and related to the well-known problem of commuting symmetric Vandermonde matrices $\Lambda$ with (symmetric) three-diagonal matrices $T$. It is shown that already the first few equations of commutation and the above condition of materiality determine the form of rational functions $f(\lambda)$ and the equations found for the elements of three-diagonal matrices $T$ are independent of the order of $N$ commuting matrices. The obtained equations and the given examples allow us to hypothesize that the considered rational functions are a generalization of Chebyshev polynomials. In a sense, a similar, hypothesis was expressed recently published in “Teoreticheskaya i Matematicheskaya Fizika” by V. M. Bukhstaber et al., where applications of these generalizations are discussed in modern mathematical physics.
@article{VMJ_2020_22_1_a0,
     author = {A. E. Artisevich and A. B. Shabat},
     title = {Three theorems on {Vandermond} matrices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a0/}
}
TY  - JOUR
AU  - A. E. Artisevich
AU  - A. B. Shabat
TI  - Three theorems on Vandermond matrices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 5
EP  - 12
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a0/
LA  - ru
ID  - VMJ_2020_22_1_a0
ER  - 
%0 Journal Article
%A A. E. Artisevich
%A A. B. Shabat
%T Three theorems on Vandermond matrices
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 5-12
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a0/
%G ru
%F VMJ_2020_22_1_a0
A. E. Artisevich; A. B. Shabat. Three theorems on Vandermond matrices. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a0/