Unbounded order convergence and the Gordon theorem
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 56-62

Voir la notice de l'article provenant de la source Math-Net.Ru

The celebrated Gordon's theorem is a natural tool for dealing with universal completions of Archimedean vector lattices. Gordon's theorem allows us to clarify some recent results on unbounded order convergence. Applying the Gordon theorem, we demonstrate several facts on order convergence of sequences in Archimedean vector lattices. We present an elementary Boolean-Valued proof of the Gao–Grobler–Troitsky–Xanthos theorem saying that a sequence $x_n$ in an Archimedean vector lattice $X$ is $uo$-null ($uo$-Cauchy) in $X$ if and only if $x_n$ is $o$-null ($o$-convergent) in $X^u$. We also give elementary proof of the theorem, which is a result of contributions of several authors, saying that an Archimedean vector lattice is sequentially $uo$-complete if and only if it is $\sigma$-universally complete. Furthermore, we provide a comprehensive solution to Azouzi's problem on characterization of an Archimedean vector lattice in which every $uo$-Cauchy net is $o$-convergent in its universal completion.
@article{VMJ_2019_21_4_a4,
     author = {E. Y. Emelyanov and S. G. Gorokhova and S. S. Kutateladze},
     title = {Unbounded order convergence and the {Gordon} theorem},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/}
}
TY  - JOUR
AU  - E. Y. Emelyanov
AU  - S. G. Gorokhova
AU  - S. S. Kutateladze
TI  - Unbounded order convergence and the Gordon theorem
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 56
EP  - 62
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/
LA  - en
ID  - VMJ_2019_21_4_a4
ER  - 
%0 Journal Article
%A E. Y. Emelyanov
%A S. G. Gorokhova
%A S. S. Kutateladze
%T Unbounded order convergence and the Gordon theorem
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 56-62
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/
%G en
%F VMJ_2019_21_4_a4
E. Y. Emelyanov; S. G. Gorokhova; S. S. Kutateladze. Unbounded order convergence and the Gordon theorem. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 56-62. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/