Unbounded order convergence and the Gordon theorem
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 56-62
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The celebrated Gordon's theorem is a natural tool for dealing with universal
completions of Archimedean vector lattices. Gordon's theorem allows us to
clarify some recent results on unbounded order convergence. Applying the Gordon theorem,
we demonstrate several facts on order convergence of sequences in Archimedean vector lattices.
We present an elementary Boolean-Valued proof of the
Gao–Grobler–Troitsky–Xanthos theorem saying that a sequence $x_n$ in an Archimedean
vector lattice $X$ is $uo$-null ($uo$-Cauchy) in $X$ if and only if $x_n$ is $o$-null ($o$-convergent)
in $X^u$. We also give elementary proof of the theorem, which is a result of contributions
of several authors, saying that an Archimedean vector lattice is sequentially $uo$-complete
if and only if it is $\sigma$-universally complete. Furthermore, we provide a comprehensive
solution to Azouzi's problem on characterization of an Archimedean vector lattice
in which every $uo$-Cauchy net is $o$-convergent in its universal completion.
			
            
            
            
          
        
      @article{VMJ_2019_21_4_a4,
     author = {E. Y. Emelyanov and S. G. Gorokhova and S. S. Kutateladze},
     title = {Unbounded order convergence and the {Gordon} theorem},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/}
}
                      
                      
                    TY - JOUR AU - E. Y. Emelyanov AU - S. G. Gorokhova AU - S. S. Kutateladze TI - Unbounded order convergence and the Gordon theorem JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 56 EP - 62 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/ LA - en ID - VMJ_2019_21_4_a4 ER -
E. Y. Emelyanov; S. G. Gorokhova; S. S. Kutateladze. Unbounded order convergence and the Gordon theorem. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 56-62. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/
