@article{VMJ_2019_21_4_a4,
author = {E. Y. Emelyanov and S. G. Gorokhova and S. S. Kutateladze},
title = {Unbounded order convergence and the {Gordon} theorem},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--62},
year = {2019},
volume = {21},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/}
}
TY - JOUR AU - E. Y. Emelyanov AU - S. G. Gorokhova AU - S. S. Kutateladze TI - Unbounded order convergence and the Gordon theorem JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 56 EP - 62 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/ LA - en ID - VMJ_2019_21_4_a4 ER -
E. Y. Emelyanov; S. G. Gorokhova; S. S. Kutateladze. Unbounded order convergence and the Gordon theorem. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 56-62. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a4/
[1] Aliprantis C. D., Burkinshaw O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, 105, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[2] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000 | MR | Zbl
[3] Gao N., Troitsky V. G., Xanthos F., “Uo-Convergence and its Applications to Cesáro Means in Banach Lattices”, Israel Journal of Mathematics, 220:2 (2017), 649–689 | DOI | MR | Zbl
[4] Kaplan S., “On Unbounded Order Convergence”, Real Anal. Exchange, 23:1 (1997/98), 175–184 | DOI | MR
[5] Kusraev A. G., Kutateladze S. S., Boolean-valued Analysis, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[6] Abramovich Y. A., Sirotkin G. G., “On Order Convergence of Nets”, Positivity, 9:3 (2005), 287–292 | DOI | MR | Zbl
[7] Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A., “Order Convergence in Infinite-dimensional Vector Lattices is not Topological”, Uzbek Math. J., 3 (2019), 4–10
[8] Gorokhova S. G., “Intrinsic Characterization of the Space $c_0(A)$ in the Class of Banach Lattices”, Math. Notes, 60:3 (1996), 330–333 | DOI | MR | Zbl
[9] Nakano H., “Ergodic Theorems in Semi-ordered Linear Spaces”, Ann. Math., 49:2 (1948), 538–556 | DOI | MR | Zbl
[10] Wickstead A. W., “Weak and Unbounded Order Convergence in Banach Lattices”, J. Austral. Math. Soc. Ser. A, 24:3 (1977), 312–319 | DOI | MR | Zbl
[11] Deng Y., O'Brien M., Troitsky V. G., “Unbounded Norm Convergence in Banach Lattices”, Positivity, 21:3 (2017), 963–974 | DOI | MR | Zbl
[12] Emelyanov E. Y., Marabeh M. A. A., “Two Measure-free Versions of the Brezis–Lieb Lemma”, Vladikavkaz Math. J., 18:1 (2016), 21–25 | DOI | MR
[13] Li H., Chen Z., “Some Loose Ends on Unbounded Order Convergence”, Positivity, 22:1 (2018), 83–90 | DOI | MR | Zbl
[14] Emelyanov E. Y., Erkurşun-Özcan N., Gorokhova S. G., “Komlós Properties in Banach Lattices”, Acta Math. Hungarica, 155:2 (2018), 324–331 | DOI | MR | Zbl
[15] Azouzi Y., “Completeness for Vector Lattices”, J. Math. Anal. Appl., 472:1 (2019), 216–230 | DOI | MR | Zbl
[16] Taylor M. A., “Completeness of Unbounded Convergences”, Proc. Amer. Math. Soc., 146:8 (2018), 3413–3423 | DOI | MR | Zbl
[17] Ayd{\i}n A., Emelyanov E. Y., Erkurşun-Özcan N., Marabeh M. A. A., “Unbounded $p$-Convergence in Lattice-normed Vector Lattices”, Siberian Adv. Math., 29:3 (2019), 164–182 | DOI | MR
[18] Taylor M. A., Master Thesis, University of Alberta, Edmonton, 2019
[19] Gordon E. I., “Real Numbers in Boolean-Valued Models of Set Theory and $K$-Spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 | MR | Zbl
[20] Kantorovich L. V., “On Semi-Ordered Linear Spaces and their Applications to the Theory of Linear Operations”, Dokl. Akad. Nauk SSSR, 4:1–2 (1935), 11–14
[21] Gordon E. I., “$K$-spaces in Boolean-valued Models of Set Theory”, Dokl. Akad. Nauk SSSR, 258:4 (1981), 777–780 | MR | Zbl
[22] Gordon E. I., “Theorems on Preservation of Relations in $K$-spaces”, Sib. Math. J., 23:3 (1982), 336–344 | DOI | MR | Zbl
[23] Dales H. G., Woodin W. H., An Introduction to Independence for Analysts, Cambridge University Press, Cambridge, 1987, 241 pp. | MR | Zbl
[24] Gordon E. I., Kusraev A. G., Kutateladze S. S., Infinitesimal Analysis, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[25] Gutman A. E., Kusraev A. G., Kutateladze S. S., “The Wickstead Problem”, Sib. Elektron. Mat. Izv., 5 (2008), 293–333 | MR | Zbl