Some remarks about nonstandard methods in analysis. I
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 25-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This and forthcoming articles discuss two of the most known nonstandard methods of analysis—the Robinson's infinitesimal analysis and the Boolean valued analysis, the history of their origination, common features, differences, applications and prospects. This article contains a review of infinitesimal analysis and the original method of forcing. The presentation is intended for a reader who is familiar only with the most basic concepts of mathematical logic—the language of first-order predicate logic and its interpretations. It is also desirable to have some idea of the formal proofs and the Zermelo–Fraenkel axiomatics of the set theory. In presenting the infinitesimal analysis, special attention is paid to formalizing the sentences of ordinary mathematics in a first-order language for a superstructure. The presentation of the forcing method is preceded by a brief review of C. Godel's result on the compatibility of the Axiom of Choice and the Continuum Hypothesis with Zermelo–Fraenkel's axiomatics. The forthcoming article is devoted to Boolean valued models and to the Boolean valued analysis, with particular attention to the history of its origination.
@article{VMJ_2019_21_4_a2,
     author = {E. I. Gordon},
     title = {Some remarks about nonstandard methods in {analysis.~I}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {25--41},
     year = {2019},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a2/}
}
TY  - JOUR
AU  - E. I. Gordon
TI  - Some remarks about nonstandard methods in analysis. I
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 25
EP  - 41
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a2/
LA  - en
ID  - VMJ_2019_21_4_a2
ER  - 
%0 Journal Article
%A E. I. Gordon
%T Some remarks about nonstandard methods in analysis. I
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 25-41
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a2/
%G en
%F VMJ_2019_21_4_a2
E. I. Gordon. Some remarks about nonstandard methods in analysis. I. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 25-41. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a2/

[1] Kusraev A. G., Kutateladze S. S., Nonstandard Methods of Analysis, Kluwer Academic Publishers, Dordrecht, 1995, 398 pp. | MR

[2] Maltsev A. I., “A General Method for Obtaining Local Theorems in Group Theory”, Uchen. Zap. Ivanovsk. Gos. Ped. Inst. Uch. Zap. Fiz.-Mat. Fak., 1:1 (1941), 3–9 (in Russian) | MR

[3] Robinson A., Nonstandard Analysis, Revised Edition, Princeton University Press, Princeton, 1996, 312 pp. | MR

[4] Albeverio S., Fenstad J. E. and et al., Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, etc, 1990, 514 pp. | MR

[5] Scott D., “A Proof of the Independence of the Continuum Hypothesis”, Mathematical System Theory, 1:2 (1967), 89–111 | DOI | MR | Zbl

[6] Scott D., Lectures of Boolean Valued Models of Set Theory, Amer. Math. Soc., Summer Institute on Axiomatic Set Theory, UCLA, 1967

[7] Scott D., Solovay R., Boolean Valued Models of Set Theory, Axiomatic Set Theory, Proc. Sympos. Pure Math., 13, Amer. Math. Soc., Providence, R. I. | MR

[8] Saks G., “Measure-Theoretical Uniformity in Recursion Theory and Set Theory”, Trans. Amer. Math. Soc., 142:2 (1969), 381–420 | DOI | MR

[9] Takeuti G., Two Applications of Logic to Mathematics, Iwanami and Princeton University Press, Tokio–Princeton, 1978, 148 pp. | MR | Zbl

[10] Takeuti G., “A Transfer Principle in Harmonic Analysis”, Journal of Symbolic Logic, 44:3 (1979), 417–440 | DOI | MR | Zbl

[11] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, M., 2005, 526 pp. (in Russian) | MR | Zbl

[12] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, Southern Mathematical Institute, VSC RAS RNO-A, Vladikavkaz, 2014, 400 pp. | Zbl

[13] Gordon E. I., “Real Numbers in Boolean Valued Models of Set Theory, and $K$-Spaces”, Soviet Mathematics Doklady, 18 (1977), 1481–1484 | MR | Zbl

[14] Loeb P. A., Wolff M. Ph., Nonstandard Analysis for the Working Mathematician, Kluwer Academic Publishers, Dordrecht, 2000, 325 pp. | MR | Zbl

[15] Davis M., Applied Nonstandard Analysis, John Wiley Sons, New York, etc., 1977 | MR | Zbl

[16] Manin Yu. I., A Course in Mathematical Logic for Mathematicians, Second Edition, Springer, New York, etc., 2010, 403 pp. | MR | Zbl

[17] Gordon E. I., Nonstandard Methods in Commutative Harmonic Analysis, Amer. Math. Soc., Providence, R. I., 1977, 180 pp. | MR

[18] McDuff D., “On Theory of $II_1$ Factors”, Russian Mathematical Surveys, 25:1 (1970), 29–51 (in Russian) | DOI | MR | Zbl

[19] Solovay R., “A Model of Set-Theory in Which Every Set of Reals is Lebesgue Measurable”, Annals of Mathematics, 92:1 (1970), 1–56 | DOI | MR | Zbl

[20] Gödel K., Consistency of Continuum Hypothesis, Princeton University Press, Princeton, 1940 | MR | Zbl

[21] Jech T. J., Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Lecture Notes in Mathematics, 217, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[22] Cohen P. J., Set Theory and the Continuum Hypothesis, Benjamin, New York, etc., 1966 | MR | Zbl

[23] Vladimirov D. A., Boolean Algebras in Analysis, Springer Science Business Media, Dordrecht, 2002 | MR

[24] Solovay R., Tennenbaum S., “Iterated Cohen Extensions and Souslin's Problem”, Annals of Mathematics, 94:2 (1971), 201–245 | DOI | MR | Zbl

[25] Solovay R., “On the Cardinality of $\sum_1^2$-Sets of Reals”, Foundations of Mathematics, Symposium Papers Commemorating the Sixtieth Birthday of Kurt Gödel, Springer Verlag, Berlin, 1969, 58–73 | DOI | MR

[26] Shelah S., Can you Take Solovay's Inaccessible Away?, Israel Journal of Mathematics, 48 (1984), 1–47 | DOI | MR | Zbl

[27] Gordon E. I., On the Extension of Haar Measure in $\sigma$-Compact Groups, No 1243-81, Lenin Moscow State Pedagogical Institute, VINITI, M., 1980 (in Russian)