Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a  Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space  $\mathcal H$. Let $\mathcal C_E^h=\{x\in \mathcal C_E : x=x^*\}$ be the real Banach subspace of self-adjoint operators in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$. We show that  in the case when  $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ is a separable or perfect Banach symmetric  ideal ($\mathcal C_E \neq \mathcal C_2$)  any  skew-Hermitian operator $H: \mathcal C_E^h\to \mathcal C_E^h$  has the following form $H(x)=i(xa - ax)$ for same $a^*=a\in  \mathcal B(\mathcal H)$ and for  all $x\in \mathcal C_E^h$. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries $V:\mathcal C_E^h \to \mathcal C_E^h$. Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a separable or a perfect Banach symmetric ideal with not uniform norm, that is  $\|p\|_{\mathcal C_E}> 1$ for any finite dimensional projection $p \in\mathcal C_E$ with  $\dim p(\mathcal H)>1$,  let $\mathcal C_E \neq \mathcal C_2$, and let $V: \mathcal C_E^h \to \mathcal C_E^h$ be a surjective linear isometry. Then there exists unitary  or anti-unitary operator $u$ on $\mathcal H$  such that  $V(x)=uxu^*$  or $V(x)=-uxu^*$ for all $x \in \mathcal C_E^h$.
			
            
            
            
          
        
      @article{VMJ_2019_21_4_a1,
     author = {B. R. Aminov and V. I. Chilin},
     title = {Isometries of real subspaces of self-adjoint operators in banach symmetric ideals},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/}
}
                      
                      
                    TY - JOUR AU - B. R. Aminov AU - V. I. Chilin TI - Isometries of real subspaces of self-adjoint operators in banach symmetric ideals JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 11 EP - 24 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/ LA - en ID - VMJ_2019_21_4_a1 ER -
B. R. Aminov; V. I. Chilin. Isometries of real subspaces of self-adjoint operators in banach symmetric ideals. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/
