Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space $\mathcal H$. Let $\mathcal C_E^h=\{x\in \mathcal C_E : x=x^*\}$ be the real Banach subspace of self-adjoint operators in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$. We show that in the case when $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ is a separable or perfect Banach symmetric ideal ($\mathcal C_E \neq \mathcal C_2$) any skew-Hermitian operator $H: \mathcal C_E^h\to \mathcal C_E^h$ has the following form $H(x)=i(xa - ax)$ for same $a^*=a\in \mathcal B(\mathcal H)$ and for all $x\in \mathcal C_E^h$. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries $V:\mathcal C_E^h \to \mathcal C_E^h$. Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a separable or a perfect Banach symmetric ideal with not uniform norm, that is $\|p\|_{\mathcal C_E}> 1$ for any finite dimensional projection $p \in\mathcal C_E$ with $\dim p(\mathcal H)>1$, let $\mathcal C_E \neq \mathcal C_2$, and let $V: \mathcal C_E^h \to \mathcal C_E^h$ be a surjective linear isometry. Then there exists unitary or anti-unitary operator $u$ on $\mathcal H$ such that $V(x)=uxu^*$ or $V(x)=-uxu^*$ for all $x \in \mathcal C_E^h$.
@article{VMJ_2019_21_4_a1,
     author = {B. R. Aminov and V. I. Chilin},
     title = {Isometries of real subspaces of self-adjoint operators in banach symmetric ideals},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--24},
     year = {2019},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/}
}
TY  - JOUR
AU  - B. R. Aminov
AU  - V. I. Chilin
TI  - Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 11
EP  - 24
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/
LA  - en
ID  - VMJ_2019_21_4_a1
ER  - 
%0 Journal Article
%A B. R. Aminov
%A V. I. Chilin
%T Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 11-24
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/
%G en
%F VMJ_2019_21_4_a1
B. R. Aminov; V. I. Chilin. Isometries of real subspaces of self-adjoint operators in banach symmetric ideals. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/

[1] Banach S., Theorie des Operations Lineaires, Warsaw, 1932 | MR

[2] Lamperti J., “On the Isometries of Some Function Spaces”, Pacific Journal of Mathematics, 8:3 (1958), 459–466 | DOI | MR | Zbl

[3] Lumer G., “On the Isometries of Reflexive Orlicz Spaces”, Annales de l'Institut Fourier, 13:1 (1963), 99–109 | DOI | MR | Zbl

[4] Zaidenberg M. G., “On Isometric Classification of Symmetric Spaces”, Doklady Akademii Nauk SSSR, 234 (1977), 283–286 (in Russian) | MR | Zbl

[5] Zaidenberg M. G., “A Representation of Isometries of Functional Spaces”, Journal of Mathematical Physics, Analysis, Geometry, 4:3 (1997), 339–347 | MR | Zbl

[6] Kalton N. J., Randrianantoanina B., “Surjective Isometries on Rearrangment Invariant Spaces”, The Quarterly Journal of Mathematics, 45:3 (1994), 301–327 | DOI | MR | Zbl

[7] Braverman M. Sh., Semenov E. M., “Isometries on Symmetric Spaces”, Doklady Akademii Nauk SSSR, 217 (1974), 257–259 (in Russian) | MR | Zbl

[8] Braverman M. Sh., Semenov E. M., “Isometries on Symmetric Spaces”, Trudy NII Matem. Voronezh. Gos. Univ., 17 (1975), 7–18 (in Russian) | MR

[9] Arazy J., “Isometries on Complex Symmetric Sequence Spaces”, Mathematische Zeitschrift, 188:3 (1985), 427–431 | DOI | MR

[10] Aminov B. R., Chilin V. I., “Isometries and Hermitian Operators on Complex Symmetric Sequence Spaces”, Siberian Advances in Mathematics, 27:4 (2017), 239–252 | DOI | MR | Zbl

[11] Arazy J., “The Isometries of $\mathcal C_p$”, Israel Journal of Mathematics, 22:3–4 (1975), 247–256 | DOI | MR

[12] Fleming R. J., Jamison J. E., Isometries on Banach Spaces: Vector-Valued Function Spaces, Chapman-Hall/CRC, 2008 | MR

[13] Sourour A., “Isometries of Norm Ideals of Compact Operators”, Journal of Functional Analysis, 43:1 (1981), 69–77 | DOI | MR | Zbl

[14] Aminov B. R., Chilin V. I., “Isometries of Perfect Norm Ideals of Compact Operators”, Studia Math., 241:1 (2018), 87–99 | DOI | MR | Zbl

[15] Garling D. J. H., “On Ideals of Operators in Hilbert Space”, Proceedings of the London Mathematical Society, 17:1 (1967), 115–138 | DOI | MR | Zbl

[16] Nagy G., “Isometries of the Spaces of Self-Adjoint Traceless Operators”, Linear Algebra and its Applications, 484 (2015), 1–12 | DOI | MR | Zbl

[17] Bennett C., Sharpley R., Interpolation of Operators, Academic Press Inc., 1988 | MR | Zbl

[18] Simon B., Trace Ideals and Their Applications, Mathematical Surveys and Monographs, 120, 2nd edition, Amer. Math. Soc., Providence, R. I., 2005 | MR | Zbl

[19] Kalton N. J., Sukochev F. A., “Symmetric Norms and Spaces of Operators”, Journal für die Reine und Angewandte Mathematik, 621 (2008), 81–121 | DOI | MR | Zbl

[20] Lord S., Sukochev F., Zanin D., Singular Traces. Theory and Applications, Walter de Gruyter GmbH, Berlin–Boston, 2013 | MR

[21] Gohberg I. C., Krein M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R. I., 1969 | DOI | MR | Zbl

[22] Krein M. G., Petunin Ju. I., Semenov E. M., Interpolation of Linear Operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, R. I., 1982 | MR

[23] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Springer-Verlag, Berlin–N. Y., 1996 | MR | Zbl

[24] Dodds P. G., Dodds T. K., Pagter B., “Noncommutative Köthe Duality”, Transactions of the American Mathematical Society, 339:2 (1993), 717–750 | DOI | MR | Zbl

[25] Dragomir S. S., Semi-Inner Products and Applications, Nova Science Publishers Inc., Hauppauge, N. Y., 2004 | MR | Zbl

[26] Ayupov Sh., Kudaybergenov K., “2-Local Derivations and Automorphisms on $B(H)$”, Journal of Mathematical Analysis and Applications, 395:1 (2012), 15–18 | DOI | MR | Zbl

[27] Dolinar G., Guterman A., Kuzma B., Oblak P., “Extremal Matrix Centralizers”, Linear Algebra and its Applications, 438:7 (2013), 2904–2910 | DOI | MR | Zbl

[28] Schatten R., Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin–N. Y., 1960 | MR | Zbl

[29] Baksalary J. K., Baksalary O. M., “Idempotency of Linear Combinations of Two Idempotent Matrices”, Linear Algebra and its Applications, 321:1–3 (2000), 3–7 | DOI | MR | Zbl

[30] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechaniks, Springer-Verlag, N. Y.–Heidelber–Berlin, 1979 | MR