Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space $\mathcal H$. Let $\mathcal C_E^h=\{x\in \mathcal C_E : x=x^*\}$ be the real Banach subspace of self-adjoint operators in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$. We show that in the case when $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ is a separable or perfect Banach symmetric ideal ($\mathcal C_E \neq \mathcal C_2$) any skew-Hermitian operator $H: \mathcal C_E^h\to \mathcal C_E^h$ has the following form $H(x)=i(xa - ax)$ for same $a^*=a\in \mathcal B(\mathcal H)$ and for all $x\in \mathcal C_E^h$. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries $V:\mathcal C_E^h \to \mathcal C_E^h$. Let $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ be a separable or a perfect Banach symmetric ideal with not uniform norm, that is $\|p\|_{\mathcal C_E}> 1$ for any finite dimensional projection $p \in\mathcal C_E$ with $\dim p(\mathcal H)>1$, let $\mathcal C_E \neq \mathcal C_2$, and let $V: \mathcal C_E^h \to \mathcal C_E^h$ be a surjective linear isometry. Then there exists unitary or anti-unitary operator $u$ on $\mathcal H$ such that $V(x)=uxu^*$ or $V(x)=-uxu^*$ for all $x \in \mathcal C_E^h$.
@article{VMJ_2019_21_4_a1,
     author = {B. R. Aminov and V. I. Chilin},
     title = {Isometries of real subspaces of self-adjoint operators in banach symmetric ideals},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/}
}
TY  - JOUR
AU  - B. R. Aminov
AU  - V. I. Chilin
TI  - Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 11
EP  - 24
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/
LA  - en
ID  - VMJ_2019_21_4_a1
ER  - 
%0 Journal Article
%A B. R. Aminov
%A V. I. Chilin
%T Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 11-24
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/
%G en
%F VMJ_2019_21_4_a1
B. R. Aminov; V. I. Chilin. Isometries of real subspaces of self-adjoint operators in banach symmetric ideals. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 11-24. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a1/