@article{VMJ_2019_21_3_a5,
author = {M. A. Petrosova and I. V. Tikhonov and V. B. Sherstyukov},
title = {Algebraic representation for {Bernstein} polynomials on the symmetric interval and combinatorial relations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {68--86},
year = {2019},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a5/}
}
TY - JOUR AU - M. A. Petrosova AU - I. V. Tikhonov AU - V. B. Sherstyukov TI - Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial relations JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 68 EP - 86 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a5/ LA - ru ID - VMJ_2019_21_3_a5 ER -
%0 Journal Article %A M. A. Petrosova %A I. V. Tikhonov %A V. B. Sherstyukov %T Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial relations %J Vladikavkazskij matematičeskij žurnal %D 2019 %P 68-86 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a5/ %G ru %F VMJ_2019_21_3_a5
M. A. Petrosova; I. V. Tikhonov; V. B. Sherstyukov. Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial relations. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 68-86. http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a5/
[1] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953, x+130 pp. | MR | Zbl
[2] Videnskij V. S., Bernstein Polynomials, Textbook for the Special Course, LSPI n.a. A. I. Herzen, L., 1990, 64 pp. (in Russian)
[3] Natanson I. P., Constructive Theory of Functions, GITTL, M.–L., 1949, 688 pp. (in Russian) | MR
[4] Korovkin P. P., Linear Operators and the Theory of Approximation, Fizmatgiz, M., 1959, 212 pp. (in Russian)
[5] Davis P. J., Interpolation, Approximation, Dover, N.Y., 1975, xvi+394 pp. | MR | Zbl
[6] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin–Heidelberg–N.Y., 1993, x+450 pp. | MR | Zbl
[7] G. M. Phillips, Interpolation and Approximation by Polynomials, Springer, N.Y.–Berlin–Heidelberg, 2003, xiv+312 pp. | MR | Zbl
[8] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Bernstein Polynomials: the Old and the New”, Math. forum. Studies in Mathematical Analysis, Results of Science. South of Russia, 8, no. 1, SMI VSC RAS RNO-A, Vladikavkaz, 2014, 126–175 (in Russian)
[9] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Gluing rule for Bernstein polynomials on the symmetric interval”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3 (2015), 288–300 (in Russian) | DOI | Zbl
[10] S. Wigert, “Réflexions sur le polynome d'approximation $\sum_{\nu=0}^n\binom\nu n \varphi(\frac\nu n)x^\nu(1-x)^{n-\nu}$”, Arkiv för Matematik, Astronomi och Fysik, 20:2 (1927), 1–15
[11] Dzyadyk V. K., Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, M., 1977, 512 pp. (in Russian)
[12] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Longman Publ. Co., Inc., Boston, 1994, 672 pp. | MR | MR | Zbl
[13] Tikhonov I. V., Sherstyukov V. B., “On the Behavior of the Coefficients of Bernstein Polynomials as Algebraic Notation on a Standard Interval”, Some Current Issues Modern Mathematics and Math. Education, Publishing House of RSPU n.a. A. I. Herzen, Saint Petersburg, 2015, 115–121 (in Russian)
[14] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Explicit Expressions for Coefficients Bernstein Polynomials in Algebraic Notation on a Symmetric Interval”, Some Current Issues Modern Mathematics and Math. Education, Publishing House of RSPU n.a. A. I. Herzen, Saint Petersburg, 2015, 121–124 (in Russian)
[15] Petrosova M. A., Tikhonov I. V., Sherstyukov V. B., “The Case of a Symmetric Interval in the Theory of Classical Bernstein Polynomials”, Computer Mathematics Systems and Their Applications, 15, Smolensk State Univ., Smolensk, 2014, 184–186 (in Russian)
[16] Petrosova M. A., Tikhonov I. V., Sherstyukov V. B., “Combinatorial Relations Related with Bernstein Polynomials on a Symmetric Interval”, Computer Mathematics Systems and Their Applications, 17, Smolensk State Univ., Smolensk, 2016, 177–182 (in Russian)
[17] J. D. Stafney, “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0, 1]$”, Duke Math. J., 34:3 (1967), 393–396 | MR | Zbl
[18] J. A. Roulier, “Permissible bounds on the coefficients of approximating polynomials”, J. Approx. Theory, 3:2 (1970), 117–122 | MR | Zbl
[19] V. I. Gurarii, M. A. Meletidi, “A Functional Analysis and Its Applications”, Funct. Anal. Appl., 5:1 (1971), 60–62 | DOI | MR
[20] N. E. Nörlund, Vorlesungenuber Differenzenrechnung, Springer Verlag, Berlin, 1924, ix+551 pp.
[21] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “New Research, Associated with the Algebraic Representation of Bernstein Polynomials on a Symmetric Interva”, Computer Mathematics Systems and Their Applications, 19, Smolensk State Univ., Smolensk, 2018, 336–347 (in Russia)
[22] P. Feinsilver, J. Kocik, “Krawtchouk polynomials and Krawtchouk matrices”, Recent Advances in Applied Probability, eds. Baeza-Yates R., Glaz J., Gzyl H., Hüsler J., Palacios J. L., Springer, Boston, MA, 2005, 115–141 | MR | Zbl
[23] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Analysis of the Spectrum of Random Symmetric Boolean Functions”, Mat. Vopr. Kriptogr., 4:1 (2013), 59–76 (in Russian) | DOI
[24] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Krawtchouk Polynomials and their Applications in Cryptography and Coding Theory”, Mat. Vopr. Kriptogr., 6:1 (2015), 33–56 (in Russian) | DOI | MR