@article{VMJ_2019_21_3_a4,
author = {A. E. Pasenchuk and V. V. Seregina},
title = {About {Riemann} matrix operator in the space of smooth vector functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {50--61},
year = {2019},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/}
}
A. E. Pasenchuk; V. V. Seregina. About Riemann matrix operator in the space of smooth vector functions. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 50-61. http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/
[1] F. D. Gahov, Boundary Value Problems, Dover, N.Y., 1990, 561 pp. | MR
[2] Muskhelishvili N. I., Singular Integral Equations, Nauka, M., 1968, 599 pp. (in Russian)
[3] Vekua N. P., Systems of Singular Integral Equations, Nauka, M., 1970, 252 pp. (in Russian)
[4] Gohberg I. C., Fel'dman I. A., Convolution Equations and Projection Methods for their Solution, Nauka, M., 1971, 352 pp. (in Russian) | MR
[5] I. C. Gohberg, N. Ya. Krupnik, Introduction to the Theory of One-Dimentional Singular Integral Operators, Shtiintsa, Kishinev, 1973, 426 pp. (in Russian) | MR
[6] Simonenko I. B., “Some General Questions in the Theory of the Riemann Boundary Problem”, Mathematics of the USSR-Izvestiya, 2:5 (1968), 1091–1099 | DOI | MR | Zbl
[7] Presdorf Z., Some Classes of Singular Equations, Mir, M., 1979, 493 pp. (in Russian)
[8] Soldatov, A. P., One-Dimensional Singular operators and Boundary Value Problems of the Theory of Functions, Vysshaya shkola, M., 1991, 210 pp. (in Russian)
[9] Volevich L. Z., Gindikin S. G., Generalized Convolution Functions and Equations, Nauka, M., 1994, 336 pp. (in Russian)
[10] Dybin, V. B., Karapetyants, N. K., “Application of the Normalization Method to a Class of Infinite Systems of Linear Algebraic Equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10, 39–49 (in Russian) | Zbl
[11] Zilberman B., “On Singular Operators in Spaces of Infinitely Differentiable and Generalized Functions”, Matematicheskiye Issledovaniya, 6:3 (1971), 168–179 (in Russian) | MR | Zbl
[12] Pasenchuk A. E., Discrete Operators of Convolution Type in Classes of Sequences with Power-Law Behavior at Infinity, SFU, Rostov-on-Don, 2013, 279 pp. (in Russian)