About Riemann matrix operator in the space of smooth vector functions
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 50-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space of vector functions smooth on the unit circle, we consider the matrix operator of linear conjugation generated by the Riemann boundary-value problem. It is assumed that the coefficients of the boundary value problem are smooth matrix functions. The concept of smooth degenerate factorization of the plus and minus types of a smooth matrix function is introduced and studied. In terms of degenerate factorizations, we give necessary and sufficient conditions for the noethericity of the considered Riemann matrix operator in the space of smooth vector functions. For a function smooth on a circle having at most finitely many zeros of finite orders, the concept of a singular index is introduced and studied, generalizing the concept of the index of a non-degenerate continuous function. For the Noetherian matrix Riemann operator, a formula is obtained for calculating the index of this operator, which coincides with the well-known similar formula in the case where the coefficients of the Riemann operator are non-degenerate.
@article{VMJ_2019_21_3_a4,
     author = {A. E. Pasenchuk and V. V. Seregina},
     title = {About {Riemann} matrix operator in the space of smooth vector functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--61},
     year = {2019},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/}
}
TY  - JOUR
AU  - A. E. Pasenchuk
AU  - V. V. Seregina
TI  - About Riemann matrix operator in the space of smooth vector functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 50
EP  - 61
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/
LA  - ru
ID  - VMJ_2019_21_3_a4
ER  - 
%0 Journal Article
%A A. E. Pasenchuk
%A V. V. Seregina
%T About Riemann matrix operator in the space of smooth vector functions
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 50-61
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/
%G ru
%F VMJ_2019_21_3_a4
A. E. Pasenchuk; V. V. Seregina. About Riemann matrix operator in the space of smooth vector functions. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 50-61. http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a4/

[1] F. D. Gahov, Boundary Value Problems, Dover, N.Y., 1990, 561 pp. | MR

[2] Muskhelishvili N. I., Singular Integral Equations, Nauka, M., 1968, 599 pp. (in Russian)

[3] Vekua N. P., Systems of Singular Integral Equations, Nauka, M., 1970, 252 pp. (in Russian)

[4] Gohberg I. C., Fel'dman I. A., Convolution Equations and Projection Methods for their Solution, Nauka, M., 1971, 352 pp. (in Russian) | MR

[5] I. C. Gohberg, N. Ya. Krupnik, Introduction to the Theory of One-Dimentional Singular Integral Operators, Shtiintsa, Kishinev, 1973, 426 pp. (in Russian) | MR

[6] Simonenko I. B., “Some General Questions in the Theory of the Riemann Boundary Problem”, Mathematics of the USSR-Izvestiya, 2:5 (1968), 1091–1099 | DOI | MR | Zbl

[7] Presdorf Z., Some Classes of Singular Equations, Mir, M., 1979, 493 pp. (in Russian)

[8] Soldatov, A. P., One-Dimensional Singular operators and Boundary Value Problems of the Theory of Functions, Vysshaya shkola, M., 1991, 210 pp. (in Russian)

[9] Volevich L. Z., Gindikin S. G., Generalized Convolution Functions and Equations, Nauka, M., 1994, 336 pp. (in Russian)

[10] Dybin, V. B., Karapetyants, N. K., “Application of the Normalization Method to a Class of Infinite Systems of Linear Algebraic Equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10, 39–49 (in Russian) | Zbl

[11] Zilberman B., “On Singular Operators in Spaces of Infinitely Differentiable and Generalized Functions”, Matematicheskiye Issledovaniya, 6:3 (1971), 168–179 (in Russian) | MR | Zbl

[12] Pasenchuk A. E., Discrete Operators of Convolution Type in Classes of Sequences with Power-Law Behavior at Infinity, SFU, Rostov-on-Don, 2013, 279 pp. (in Russian)