@article{VMJ_2019_21_2_a5,
author = {T. K. Yuldashev},
title = {A coefficient determination in nonlocal problem for {Boussinesq} type integro-differential equation with degenerate kernel},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {67--84},
year = {2019},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a5/}
}
TY - JOUR AU - T. K. Yuldashev TI - A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 67 EP - 84 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a5/ LA - ru ID - VMJ_2019_21_2_a5 ER -
%0 Journal Article %A T. K. Yuldashev %T A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel %J Vladikavkazskij matematičeskij žurnal %D 2019 %P 67-84 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a5/ %G ru %F VMJ_2019_21_2_a5
T. K. Yuldashev. A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 67-84. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a5/
[1] Akhtyamov A. M., Ayupova A. R., “On Solving the Problem of Diagnosing Defects in a Small Cavity in the Rod”, Middle Volga Mathematical Society Journal, 12:3 (2010), 37–42 (in Russian)
[2] Turbin M. V., “Investigation of Initial-Boundary Valye Problem for the Herschel-Bulkley Mathematical Fluid Model”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2013, no. 2, 246–257 (in Russian)
[3] Whitham G. B., Linear and Nonlinear Waves, John Wiley Sons, 1974 | MR | MR | Zbl
[4] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl
[5] Gordeziani D. G., Avalishvili G. A., “On the Constructing of Solutions of the Nonlocal Initial Boundary Value Problems for One-Dimensional Medium Oscillation Equations”, Matematicheskoe Modelirovanie, 12:1 (2000), 94–103 (in Russian) | MR | Zbl
[6] Pul'kina L. S., “A Nonlocal Problem for a Hyperbolic Equation with Integral Conditions of the 1st Kind with Time-Dependent Kernels”, Russian Mathematics, 56:10 (2012), 26–37 | DOI | MR | Zbl
[7] Il'in V. A., “The Solvability of Mixed Problems for Hyperbolic and Parabolic Equations”, Russian Mathematical Surveys, 15:2 (1960), 85–142 | DOI | MR | Zbl
[8] Lazhetich N. L., “On the Existence of a Classical Solution of a Mixed Problem for a Second-Order One-Dimensional Hyperbolic Equation”, Differential Equations, 34:5 (1998), 683–695 | MR
[9] Chernyatin V. A., Obosnovanie Metoda Fur'e v Smeshannom Zadache dlya Uravneniy v Chastnykh Proizvodnykh, Moscow State University, M., 1991, 112 pp. (in Russian)
[10] Kononenko L. I., “Direct and Inverse Problems for a Singular System with Slow and Fast Variables in Chemical Kinetics”, Vladikavkaz Math. J., 17:1 (2015), 39–46 (in Russian) | DOI | MR
[11] Kostin A. B., “The Inverse Problem of Recovering the Source in a Parabolic Equation Under a Condition of Nonlocal Observation”, Sbornik: Mathematics, 204:10 (2013), 1391–1434 | DOI | DOI | MR | Zbl
[12] Prilepko A. I., Tkachenko D. S., “Properties of Solutions of a Parabolic Equation and the Uniqueness of the Solution of the Inverse Source Problem with Integral Overdetermination”, Computational Mathematics and Mathematical Physics, 43:4 (2003), 537–546 | MR | Zbl
[13] Yuldashev T. K., “On the Inverse Problem for the quasilinear Partial Differential Equation of the First Order”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2012, no. 2(18), 56–62 (in Russian)
[14] Yuldashev T. K., “Inverse Problem for Nonlinear Partial Differential Equation with High Order Pseudoparabolic Operator”, J. Samara State Tech. Univ. Ser. Phys. Math. Sci., 2012, no. 3(28), 17–29 (in Russian) | DOI | Zbl
[15] Yuldashev T. K., “Inverse Problem for a Nonlinear Integral and Differential Equation of the Third Order”, Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013 No9/1(110), 58–66 (in Russian) | Zbl
[16] Yuldashev T. K., “Inverse Problem for a Third Order Fredholm Integro-Differential Equation with Degenerate Kernel”, Vladikavkaz Math. J., 18:2 (2016), 76–85 (in Russian) | DOI | MR
[17] Polozhiy G. N., Uravneniya Matematicheskoy Fiziki, Vysshaya Shkola, M., 1964, 560 pp. (in Russian) | MR
[18] Nikol'skiy S. M., Kurs Matematicheskogo Analiza, v. 1, Nauka, M., 1990, 528 pp. (in Russian) | MR