The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 58-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of determining the matrix kernel $K(t)=\mathrm{diag}(K_1, K_2, K_3)(t)$, $ t>0,$ occurring in the system of integro-differential viscoelasticity equations for anisotropic medium. The direct initial boundary value problem is to determine the displacement vector function $u(x,t)=(u_1,u_2,u_3)(x,t),$ $x=(x_1,x_2,x_3) \in R^3,$ $x_3>0$. It is assumed that the coefficients of the system (density and elastic modulus) depend only on the spatial variable $x_3>0$. The source of perturbation of elastic waves is concentrated on the boundary of $x_3=0$ and represents the Dirac Delta function (Neumann boundary condition of a special kind). The inverse problem is reduced to the previously studied problems of determining scalar kernels $K_i(t)$, $ i=1,2,3$. As an additional condition, the value of the Fourier transform in $x_2$ of the function $u(x,t)$ is given on the surface $x_3=0$. Theorems of global unique solvability and stability of the solution of the inverse problem are given. The idea of proving global solvability is to apply the contraction mapping principle to a system of nonlinear Volterra integral equations of the second kind in a weighted Banach space.
@article{VMJ_2019_21_2_a4,
author = {Zh. D. Totieva},
title = {The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {58--66},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/}
}
TY - JOUR AU - Zh. D. Totieva TI - The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 58 EP - 66 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/ LA - ru ID - VMJ_2019_21_2_a4 ER -
Zh. D. Totieva. The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 58-66. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/