@article{VMJ_2019_21_2_a4,
author = {Zh. D. Totieva},
title = {The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {58--66},
year = {2019},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/}
}
TY - JOUR AU - Zh. D. Totieva TI - The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 58 EP - 66 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/ LA - ru ID - VMJ_2019_21_2_a4 ER -
Zh. D. Totieva. The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 58-66. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/
[1] Kristensen R. M., Introduction to the Theory of Viscoelasticity, Mir, M., 1974, 340 pp. (in Russian)
[2] Rabotnov Yu. N., Elements of Hereditary Mechanics of Solids, Nauka, M., 1977, 384 pp. (in Russian)
[3] Rabotnov Yu. N., Mechanics of a Deformable Solid, Nauka, M., 1988, 712 pp. (in Russian)
[4] Pipkin A. C., Lectures on Viscoelasticity Theory, Springer, Berlin, 1986, 199 pp.
[5] Khohlov A. V., “The Qualitative Analysis of Theoretic Curves Generated by Linear Viscoelasticity Constitutive Equation”, Sience and Education, 2016, no. 5, 187–245
[6] Durdiev D. K., Totieva Zh. D., “The Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation”, Journal of Applied and Industrial Mathematics, 16:2 (2013), 72–82 (in Russian) | MR | Zbl
[7] Durdiev D. Q., Totieva Zh. D., “The Problem of Determining the Multidimensional Kernel of Viscoelasticity Equation”, Vladikavkaz Math. J., 17:4 (2015), 18–43 (in Russian) | DOI | MR
[8] Durdiev D. K., Totieva Zh. D., “The Problem of Determining the One-Dimensional Kernel of the Electroviscoelasticity Equation”, Siberian Mathematical J., 58:3 (2017), 427–444 | DOI | DOI | MR | Zbl
[9] Durdiev D. K., Totieva Zh. D., “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mathematical Notes, 103:1–2 (2018), 118–132 | DOI | DOI | MR | Zbl
[10] Safarov Zh. Sh., Durdiev D. K., “Inverse Problem for Integro-Differential Equation of Acoustics”, Differential Equations, 54:1 (2018), 136–147 (in Russian) | DOI
[11] Durdiev D. K., Rahmonov A. A., “Inverse Problem for A System of Integro-Differential Equations for SH Waves in a Visco-Elastic Porous Medium: Global Solvability”, Theoretical and Mathematical Physics, 195:3 (2018), 923–937 | DOI | DOI | MR | Zbl
[12] Durdiev D. K., Durdiev U. D., “The problem of kernel determination from viscoelasticity system integro-differential equations for homogeneous anisotropic media”, Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016), 405–409 | DOI | Zbl
[13] Durdiev D. K., Totieva Zh. D., “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Meth. Appl. Sci., 17:17 (2018), 8019–8032 | DOI | MR | Zbl
[14] Tuaeva Zh. D., “Multidimensional Mathematical Model of Seismic Memory”, Research on Differential Equations and Mathematical Modeling, VNC RAN, Vladikavkaz, 2008, 297–306 (in Russian)