The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 58-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of determining the matrix kernel $K(t)=\mathrm{diag}(K_1, K_2, K_3)(t)$, $ t>0,$ occurring in the system of integro-differential viscoelasticity equations for anisotropic medium. The direct initial boundary value problem is to determine the displacement vector function $u(x,t)=(u_1,u_2,u_3)(x,t),$ $x=(x_1,x_2,x_3) \in R^3,$ $x_3>0$. It is assumed that the coefficients of the system (density and elastic modulus) depend only on the spatial variable $x_3>0$. The source of perturbation of elastic waves is concentrated on the boundary of $x_3=0$ and represents the Dirac Delta function (Neumann boundary condition of a special kind). The inverse problem is reduced to the previously studied problems of determining scalar kernels $K_i(t)$, $ i=1,2,3$. As an additional condition, the value of the Fourier transform in $x_2$ of the function $u(x,t)$ is given on the surface $x_3=0$. Theorems of global unique solvability and stability of the solution of the inverse problem are given. The idea of proving global solvability is to apply the contraction mapping principle to a system of nonlinear Volterra integral equations of the second kind in a weighted Banach space.
@article{VMJ_2019_21_2_a4,
     author = {Zh. D. Totieva},
     title = {The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 58
EP  - 66
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/
LA  - ru
ID  - VMJ_2019_21_2_a4
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 58-66
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/
%G ru
%F VMJ_2019_21_2_a4
Zh. D. Totieva. The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 58-66. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a4/