@article{VMJ_2019_21_2_a2,
author = {A. A. Makhnev and A. A. Tokbaeva},
title = {On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {27--37},
year = {2019},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/}
}
TY - JOUR
AU - A. A. Makhnev
AU - A. A. Tokbaeva
TI - On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
JO - Vladikavkazskij matematičeskij žurnal
PY - 2019
SP - 27
EP - 37
VL - 21
IS - 2
UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/
LA - ru
ID - VMJ_2019_21_2_a2
ER -
A. A. Makhnev; A. A. Tokbaeva. On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 27-37. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–N. Y., 1989 | DOI | MR | Zbl
[2] Brouwer A. E., Neumaier A., “A remark on partial linear spaces with girth 5 with an application to strongly regular graphs”, Combinatorica, 8 (1988), 57–61 | DOI | MR | Zbl
[3] Bang S., Koolen J. H., “On geometric distance-regular graphs with diameter three”, European J. Combin., 36 (2014), 331–341 | DOI | MR | Zbl
[4] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR | Zbl
[5] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[6] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[7] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl