On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 27-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for a distance-regular graph $\Gamma$ of diameter $3$ with eigenvalue $\theta_2=-1$ the complement graph of $\Gamma_3$ is pseudo-geometric for $pG_{c_3}(k,b_1/c_2 )$. Bang and Koolen investigated distance-regular graphs with intersection arrays ${(t+1)s,ts, (s+1-\psi); 1,2,(t+1)\psi}$. If $t=4$, $s=7$, $\psi=6$ then we have array ${35,28,6;1,2,30}$. Distance-regular graph $\Gamma$ with intersection array $\{35,28,6; 1,2,30\}$ has spectrum of $35^1$, $9^{168}$, $-1^{182}$, $-5^{273}$, $v=1+35+490+98=624$ vertices and $\overline{\Gamma}_3$ is a pseudogeometric graph for $pG_{30}(35,14)$. Due to the border of Delsarte, the order of clicks in $\Gamma$ is not more than $8$. It is also proved that either a neighborhood of any vertex in $\Gamma$ is the union of an isolated $7$-click, or the neighborhood of any vertex in $\Gamma$ does not contain a $7$-click and is a connected graph. The structure of the group $G$ of automorphisms of a graph $\Gamma$ with an intersection array $\{35,28,6; 1,2,30\}$ has been studied. In particular, $\pi(G)\subseteq\{2,3,5,7,13\}$ and the edge symmetric graph $\Gamma$ has a solvable group automorphisms.
@article{VMJ_2019_21_2_a2,
     author = {A. A. Makhnev and A. A. Tokbaeva},
     title = {On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--37},
     year = {2019},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - A. A. Tokbaeva
TI  - On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 27
EP  - 37
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/
LA  - ru
ID  - VMJ_2019_21_2_a2
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A A. A. Tokbaeva
%T On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 27-37
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/
%G ru
%F VMJ_2019_21_2_a2
A. A. Makhnev; A. A. Tokbaeva. On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 27-37. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a2/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–N. Y., 1989 | DOI | MR | Zbl

[2] Brouwer A. E., Neumaier A., “A remark on partial linear spaces with girth 5 with an application to strongly regular graphs”, Combinatorica, 8 (1988), 57–61 | DOI | MR | Zbl

[3] Bang S., Koolen J. H., “On geometric distance-regular graphs with diameter three”, European J. Combin., 36 (2014), 331–341 | DOI | MR | Zbl

[4] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR | Zbl

[5] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl

[6] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl

[7] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl