Randic type additive connectivity energy of a graph
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 18-26
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Randic type additive connectivity matrix of the graph $G$ of order $n$ and size $m$ is defined as $RA(G)=(R_{ij})$, where $R_{ij}=\sqrt{d_{i}}+\sqrt{d_{j}}$ if the vertices $v_i$ and $v_j$ are adjacent, and $R_{ij}=0$ if $v_i$ and $v_j$ are not adjacent, where $d_i$ and $d_j$ be the degrees of vertices $v_i$ and $v_j$ respectively. The purpose of this paper is to introduce and investigate the Randic type additive connectivity energy of a graph. In this paper, we obtain new inequalities involving the Randic type additive connectivity energy and presented upper and lower bounds for the Randic type additive connectivity energy of a graph. We also report results on Randic type additive connectivity energy of generalized complements of a graph.
			
            
            
            
          
        
      @article{VMJ_2019_21_2_a1,
     author = {K. V. Madhusudhan and P. Siva Kota Reddy and K. R. Rajanna},
     title = {Randic type additive connectivity energy of a graph},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/}
}
                      
                      
                    TY - JOUR AU - K. V. Madhusudhan AU - P. Siva Kota Reddy AU - K. R. Rajanna TI - Randic type additive connectivity energy of a graph JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 18 EP - 26 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/ LA - en ID - VMJ_2019_21_2_a1 ER -
K. V. Madhusudhan; P. Siva Kota Reddy; K. R. Rajanna. Randic type additive connectivity energy of a graph. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 18-26. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/
