Randic type additive connectivity energy of a graph
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 18-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Randic type additive connectivity matrix of the graph $G$ of order $n$ and size $m$ is defined as $RA(G)=(R_{ij})$, where $R_{ij}=\sqrt{d_{i}}+\sqrt{d_{j}}$ if the vertices $v_i$ and $v_j$ are adjacent, and $R_{ij}=0$ if $v_i$ and $v_j$ are not adjacent, where $d_i$ and $d_j$ be the degrees of vertices $v_i$ and $v_j$ respectively. The purpose of this paper is to introduce and investigate the Randic type additive connectivity energy of a graph. In this paper, we obtain new inequalities involving the Randic type additive connectivity energy and presented upper and lower bounds for the Randic type additive connectivity energy of a graph. We also report results on Randic type additive connectivity energy of generalized complements of a graph.
@article{VMJ_2019_21_2_a1,
     author = {K. V. Madhusudhan and P. Siva Kota Reddy and K. R. Rajanna},
     title = {Randic type additive connectivity energy of a graph},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {18--26},
     year = {2019},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/}
}
TY  - JOUR
AU  - K. V. Madhusudhan
AU  - P. Siva Kota Reddy
AU  - K. R. Rajanna
TI  - Randic type additive connectivity energy of a graph
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 18
EP  - 26
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/
LA  - en
ID  - VMJ_2019_21_2_a1
ER  - 
%0 Journal Article
%A K. V. Madhusudhan
%A P. Siva Kota Reddy
%A K. R. Rajanna
%T Randic type additive connectivity energy of a graph
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 18-26
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/
%G en
%F VMJ_2019_21_2_a1
K. V. Madhusudhan; P. Siva Kota Reddy; K. R. Rajanna. Randic type additive connectivity energy of a graph. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 18-26. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a1/

[1] Gutman I., “The Energy of a Graph”, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1–22 | MR

[2] Gutman I., “The Energy of a Graph: Old and New Results”, Algebraic Combinatorics and its Applications, eds. Betten A., et al., Springer-Verlag, Berlin, 2001, 196–211 | DOI | MR | Zbl

[3] Prakasha K. N., Siva Kota Reddy P., Cangül I. N., “Minimum Covering Randic Energy of a Graph”, Kyungpook Math. J., 57:4 (2017), 701–709 | MR | Zbl

[4] Siva Kota Reddy P., Prakasha K. N., Siddalingaswamy V. M., “Minimum Dominating Randic Energy of a Graph”, Vladikavkaz. Math. J., 19:1, 28–35 | DOI | MR

[5] Sampathkumar E., Pushpalatha L., Venkatachalam C. V., Pradeep Bhat, “Generalized Complements of a Graph”, Indian J. Pure Appl. Math., 29:6 (1998), 625–639 | MR | Zbl