Vibrational flows of viscous incompressible fluids for high Reinolds numbers
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the high-frequency asymptotics of the Navier–Stokes system, which describes the motion of a viscous incompressible fluid in the region bounded by a vibrating surface. The boundary conditions require the coincidence of the velocity vectors of the material particle of the fluid and the point of the boundary in which the particle is located. Consequently, the fluid is not allowed either to slip along the boundary (the no-slip condition) or to penetrate through it. It is assumed that the motion of the boundary surface is given and periodic in time, and the domain confined within it stays at rest on average but, generally speaking, can be changing its shape. The frequency of oscillations of the boundary tends to infinity, and the amplitude tends to zero, but the ratio of the amplitude to the Stokes's layer thickness remains of the order of unity. The main result is the explicit form of the equations and boundary conditions that determine the mean flow in the most general case, without special assumptions about the problem data. On this basis, a number of specific flows have been investigated, in particular, a flow in a circular pipe, caused by the normal vibration of its walls.
@article{VMJ_2019_21_2_a0,
     author = {K. I. Ilin and A. B. Morgulis},
     title = {Vibrational flows of viscous incompressible fluids for high {Reinolds} numbers},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--17},
     year = {2019},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a0/}
}
TY  - JOUR
AU  - K. I. Ilin
AU  - A. B. Morgulis
TI  - Vibrational flows of viscous incompressible fluids for high Reinolds numbers
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 5
EP  - 17
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a0/
LA  - ru
ID  - VMJ_2019_21_2_a0
ER  - 
%0 Journal Article
%A K. I. Ilin
%A A. B. Morgulis
%T Vibrational flows of viscous incompressible fluids for high Reinolds numbers
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 5-17
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a0/
%G ru
%F VMJ_2019_21_2_a0
K. I. Ilin; A. B. Morgulis. Vibrational flows of viscous incompressible fluids for high Reinolds numbers. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 2, pp. 5-17. http://geodesic.mathdoc.fr/item/VMJ_2019_21_2_a0/

[1] Craik A. D. D., Leibovich S., “A Rational model for langmuir circulations”, J. Fluid Mech., 73:3 (1976), 401–426 | DOI | Zbl

[2] Duck P. W., Smith F. T., “Steady streaming induced between oscillating cylinders”, J. Fluid Mech., 91:1 (1979), 93–110 | DOI | Zbl

[3] Haddon E. W., Riley N., “The steady streaming induced between oscillating circular cylinders”, The Quarterly J. of Mech. and Appl. Math., 32:3 (1979), 265–282 | DOI | Zbl

[4] Gopinath A., “Steady streaming due to small-amplitude torsional oscillations of a sphere in a viscous fluid”, The Quarterly J. of Mech. and Appl. Math., 46:3 (1993), 501–520 | DOI | Zbl

[5] Levenshtam V. B., “Asymptotic Expansion of the Solution of a Problem of Vibrational Convection”, Computational Mathematics and Mathematical Physics, 40:9 (2000), 1357–1365 | MR | Zbl

[6] Vladimirov V. A., “Viscous flows in a half space caused by tangential vibrations on its boundary”, Stud. Appl. Math., 121:4 (2008), 337–367 | DOI | MR | Zbl

[7] Ilin K., Morgulis A., “On the steady streaming induced by vibrating walls”, SIAM J. on Appl. Math., 72:5 (2012), 1406–1427 | DOI | MR | Zbl

[8] Riley N., “Steady streaming”, Annual Review of Fluid Mech., 33 (2001), 43–65 | DOI | MR | Zbl

[9] Longuet-Higgins M. S., “Mass transport in water waves”, Philos. Trans. Roy. Soc. London. Series A. Mathematical and Physical Sciences, 245:903 (1953), 535–581 | DOI | MR | Zbl

[10] Longuet-Higgins M. S., “Peristaltic pumping in water waves”, J. Fluid Mech., 137 (1983), 393–407 | DOI | Zbl

[11] Hollerbach R. et al., “The flow around a torsionally oscillating sphere”, Physics of Fluids, 14:12 (2002), 4192–4205 | DOI | MR