Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 62-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to the classical Whitney theorem, each open set on the plane can be decomposed as a union of special squares whose interiors do not intersect. In the paper, using the properties of Whitney squares, a new concept is introduced. For each center $a_k$ of the Whitney square, there is a point $a_k^*\in \mathbb{C}\setminus G$ such that the distance to the boundary of the open set $G$ is between two constants, regardless of $k$. In particular, a necessary and sufficient condition for a sequence $(z_k)_1^{\infty}\subset G$ under which the operator $R(f)=(f(z_1),f(z_2),\ldots,f(z_n),\ldots)$ maps generalized Nevanlinna's flat classes in a domain $G$ of a complex plane in $l^p$.
@article{VMJ_2019_21_1_a5,
     author = {F. A. Shamoyan and E. V. Tasoeva},
     title = {Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {62--73},
     year = {2019},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a5/}
}
TY  - JOUR
AU  - F. A. Shamoyan
AU  - E. V. Tasoeva
TI  - Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 62
EP  - 73
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a5/
LA  - ru
ID  - VMJ_2019_21_1_a5
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%A E. V. Tasoeva
%T Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 62-73
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a5/
%G ru
%F VMJ_2019_21_1_a5
F. A. Shamoyan; E. V. Tasoeva. Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a5/

[1] Djrbashyan A. E., Shamoyan F. A., Topics in the Theory of $A^p_\alpha$ Spaces, Teubner-Texte zur Math., 105, B. G. Teubner, Leipzig, 1988, 200 pp. | MR | Zbl

[2] Stein E. M., Singular Integrals Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970, xiv+287 pp. | MR | Zbl

[3] Shamoyan F. A., “Imbedding Theorems Connected With Problem of Multiple Interpolation in Spaces $H^p$, $0

+\infty$”, Izv. Akad. Nauk Arm. SSR, 11:2 (1976), 124–131 (in Russian) | MR | Zbl

[4] Shamoyan F. A., “The Embending Theorem in Space of $n$-Harmonic Functions and Some Applications”, Dokl. Akad. Nauk Arm. SSR, 62:1 (1976), 10–14 (in Russian) | MR | Zbl

[5] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman Spaces, Grad. Texts in Math., Springer, N. Y., 2000, 199 pp. | DOI | MR | Zbl

[6] Seip K., Interpolation and Sampling in Spaces of Analytic Functions, Univ. Lect. Ser., 33, Amer. Math. Soc., Providence, R.I., 2004, 139 pp. | DOI | MR | Zbl

[7] Carleson L., Selected Problems on Exceptional Sets, D. Van Nostrand, Princeton, New Jersey, 1967, vi+151 pp. | MR | Zbl