On the best polynomial approximation of functions in the weight Bergman space
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of finding an accurate estimate of the best approximation value $E_{n-1}(f)_{p},$ $1\leq p\leq\infty,$ using the average value of the modulus of continuity and the modulus of smoothness of the function and its corresponding derivatives is one of the important and interesting problems in the approximation theory. N. P. Korneychuk considered this problem for classes of $2\pi$ periodic functions with a convex modulus of continuity in the metric space of continuous functions $C[0, 2\pi].$ A similar problem without assuming convexity of the modulus of continuity was considered L. V. Taikov in the Hardy space $H_{p},$ $1\leq p\leq\infty$. Continuing this study of the Hardy spaces $H_{p},$ $p\geq 1,$ M. Sh. Shabozov and M. M. Mirkalonova proved new sharp inequalities in which the best approximation of analytic functions is estimated by the sums of averaged values of the modules of continuity of the function and some of its derivatives. In this paper, we give some sharp inequalities between the best polynomial approximations of analytic in the unit disk functions by algebraic complex polynomials and moduli of continuity and smoothness of a function itself and its second derivative in weighted Bergman spaces. The exact values of Bernstein and Kolmogorov $n$-widths of classes of functions in weighted Bergman spaces are calculated. The last theorem of this work generalizes a result by L. V. Taikov obtained for classes of differentiable periodic functions, to the case of functions analytic in the unit circle belonging to the space $B_{q,\gamma}$, $1\leq q\leq\infty$.
@article{VMJ_2019_21_1_a2,
     author = {M. R. Langarshoev},
     title = {On the best polynomial approximation of functions in the weight {Bergman} space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--36},
     year = {2019},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - On the best polynomial approximation of functions in the weight Bergman space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 27
EP  - 36
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/
LA  - ru
ID  - VMJ_2019_21_1_a2
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T On the best polynomial approximation of functions in the weight Bergman space
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 27-36
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/
%G ru
%F VMJ_2019_21_1_a2
M. R. Langarshoev. On the best polynomial approximation of functions in the weight Bergman space. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/

[1] Tikhomirov V. M., “Diameters of Sets in Function Spaces and the Theory of Best Approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl

[2] Taikov L. V., “Diameters of Certain Classes of Analytic Functions”, Math. Notes, 22:2 (1977), 650–656 | DOI | MR

[3] Dvejrin M. Z., “Problems of the Best Approximation of Classes of Functions Analytic in the Unit Circle”, Approximation Theory Functions (Kaluga, 1975), Nauka, M., 1977, 129–131 (in Russian) | MR

[4] Ainulloev N., Taikov L. V., “Best Approximation in the Sense of Kolmogorov of Classes of Functions Analytic in the Unit Disc”, Math. Notes, 40:3 (1986), 699–705 | DOI | MR | Zbl

[5] Farkov Yu. A., “Widths of Hardy Classes and Bergman Classes on the Ball in $\mathbb{C}^{n}$”, Russian Math. Surveys, 45:5 (1990), 229–231 | DOI | MR | Zbl

[6] Fisher S. D., Stessin M. I., “The $n$-width of the unit ball of $H^{q}$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl

[7] Vakarchuk S. B., “On some Extremal Problems of Approximation Theory in the Complex Plane”, Ukrainian Mathematical Journal, 56:9 (2004), 1371–1390 | DOI | MR | Zbl

[8] Shabozov M. Sh., Shabozov O. Sh., “About the Best Approximation of Some Classes of Analytic Functions in Weighted Bergman Spaces $B_{2,\gamma}$”, Dokl. Akad. Nauk, 412:4 (2007), 466–469 (in Russian) | Zbl

[9] Vakarchuk S. B., Zabutnaya V. I., “Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy Spaces $H_{q,\rho}$, $q\ge1,$ $0\rho\le1$”, Math. Notes, 85:3–4 (2009), 322–327 | DOI | DOI | MR | Zbl

[10] Shabozov M. Sh., Mirkalonova M. M., “The best polynomial approximation of functions in the space of Hardy $H_{p},$ $1\leq p\leq\infty$”, Proceedings of the Akademii of Sciences Republik of Tajikistan. Department of Phys. Math. Chemical., Geol. and Tech. of Science, 2009, no. 2(135), 19–31 (in Russian)

[11] Shabozov M. Sh., Langarshoev M. R., “The Best Approximation Some Classes of Functions in the Weighted Bergman space”, Proceedings of the Academy of Sciences Republic of Tajikistan. Department of Phys. Math. Chemical., Geol. and Tech. of Science, 2009, no. 3(136), 7–23 (in Russian)

[12] Vakarchuk S. B., Shabozov M. Sh., “The Widths of Classes of Analytic Functions in a Disc”, Sbornik: Mathematics, 201:8 (2010), 1091–1110 | DOI | DOI | MR | Zbl

[13] Dzyadyk V. K., Introduction into the Theory of Uniform Approximation of Functions by Polynomials, Nauka, M., 1977, 511 pp. (in Russian) | MR

[14] Korneichuk N. P., “Best Uniform Approximation of Differentiable Functions”, Dokl. Akad. Nauk SSSR, 141:2 (1961), 304–307 (in Russian) | Zbl

[15] Korneychuk N. P., Extremum Problems of Approximation Theory, Nauka, M., 1976, 320 pp. (in Russian) | MR

[16] Pinkus A., $n$-Width in Approximation Theory, Springer-Verlag, Berlin, 1985, 292 pp. | MR