@article{VMJ_2019_21_1_a2,
author = {M. R. Langarshoev},
title = {On the best polynomial approximation of functions in the weight {Bergman} space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {27--36},
year = {2019},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/}
}
M. R. Langarshoev. On the best polynomial approximation of functions in the weight Bergman space. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a2/
[1] Tikhomirov V. M., “Diameters of Sets in Function Spaces and the Theory of Best Approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl
[2] Taikov L. V., “Diameters of Certain Classes of Analytic Functions”, Math. Notes, 22:2 (1977), 650–656 | DOI | MR
[3] Dvejrin M. Z., “Problems of the Best Approximation of Classes of Functions Analytic in the Unit Circle”, Approximation Theory Functions (Kaluga, 1975), Nauka, M., 1977, 129–131 (in Russian) | MR
[4] Ainulloev N., Taikov L. V., “Best Approximation in the Sense of Kolmogorov of Classes of Functions Analytic in the Unit Disc”, Math. Notes, 40:3 (1986), 699–705 | DOI | MR | Zbl
[5] Farkov Yu. A., “Widths of Hardy Classes and Bergman Classes on the Ball in $\mathbb{C}^{n}$”, Russian Math. Surveys, 45:5 (1990), 229–231 | DOI | MR | Zbl
[6] Fisher S. D., Stessin M. I., “The $n$-width of the unit ball of $H^{q}$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl
[7] Vakarchuk S. B., “On some Extremal Problems of Approximation Theory in the Complex Plane”, Ukrainian Mathematical Journal, 56:9 (2004), 1371–1390 | DOI | MR | Zbl
[8] Shabozov M. Sh., Shabozov O. Sh., “About the Best Approximation of Some Classes of Analytic Functions in Weighted Bergman Spaces $B_{2,\gamma}$”, Dokl. Akad. Nauk, 412:4 (2007), 466–469 (in Russian) | Zbl
[9] Vakarchuk S. B., Zabutnaya V. I., “Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy Spaces $H_{q,\rho}$, $q\ge1,$ $0\rho\le1$”, Math. Notes, 85:3–4 (2009), 322–327 | DOI | DOI | MR | Zbl
[10] Shabozov M. Sh., Mirkalonova M. M., “The best polynomial approximation of functions in the space of Hardy $H_{p},$ $1\leq p\leq\infty$”, Proceedings of the Akademii of Sciences Republik of Tajikistan. Department of Phys. Math. Chemical., Geol. and Tech. of Science, 2009, no. 2(135), 19–31 (in Russian)
[11] Shabozov M. Sh., Langarshoev M. R., “The Best Approximation Some Classes of Functions in the Weighted Bergman space”, Proceedings of the Academy of Sciences Republic of Tajikistan. Department of Phys. Math. Chemical., Geol. and Tech. of Science, 2009, no. 3(136), 7–23 (in Russian)
[12] Vakarchuk S. B., Shabozov M. Sh., “The Widths of Classes of Analytic Functions in a Disc”, Sbornik: Mathematics, 201:8 (2010), 1091–1110 | DOI | DOI | MR | Zbl
[13] Dzyadyk V. K., Introduction into the Theory of Uniform Approximation of Functions by Polynomials, Nauka, M., 1977, 511 pp. (in Russian) | MR
[14] Korneichuk N. P., “Best Uniform Approximation of Differentiable Functions”, Dokl. Akad. Nauk SSSR, 141:2 (1961), 304–307 (in Russian) | Zbl
[15] Korneychuk N. P., Extremum Problems of Approximation Theory, Nauka, M., 1976, 320 pp. (in Russian) | MR
[16] Pinkus A., $n$-Width in Approximation Theory, Springer-Verlag, Berlin, 1985, 292 pp. | MR