@article{VMJ_2019_21_1_a1,
author = {A. V. Kostin},
title = {Asymptotic lines on the pseudo-spherical surfaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {16--26},
year = {2019},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a1/}
}
A. V. Kostin. Asymptotic lines on the pseudo-spherical surfaces. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 16-26. http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a1/
[1] Minding F., “Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. für die Reine und Angewandte Mathematik, 1839:19 (1839), 370–387 | DOI | MR | Zbl
[2] Blanusha D., “$ C^\infty$-isometric imbeddings of the hiperbolic plane and of cylinders with hiperbolic metric in spherical spaces”, Ann. Math. Pura Appl., 57:1 (1962), 321–337 | DOI | MR
[3] Blanusha D., “$ C^\infty$-isometric imbeddings of cylinders with hyperbolic metric in euclidean 7-space”, Glas. Mat.-Fiz. i Astron., 11:3–4 (1956), 243–246 | MR
[4] Rosenfeld B. A., Non-Euclidean Space, Nauka, M., 1969, 548 pp. (in Russian)
[5] Hesse L. O., “Über ein übertragungsprinzip”, J. für die Reine und Angewandte Mathematik, 66 (1866), 15–21 | DOI | MR | Zbl
[6] Tchebychev P. L., “Sur la coupe de vêtements”, Association Francaise pour l'Avancement de Sciences, Congres de Paris, 1878, 154–155
[7] Chebyshev P. L., “On the Cutting of Garments”, Uspekhi Mat. Nauk, 1:2(12) (1946), 38–42 (in Russian) | MR | Zbl
[8] Hazzidakis J. N., “Über einige Eigenschaften der Flächen mit konstantem Krümmungsmasz”, J. für die Reine und Angewandte Mathematik, 88 (1880), 68–73 | DOI | MR
[9] Hilbert D., “Über Flächen von konstanten Gaußscher Krümmung”, Trans. Amer. Math. Soc., 2 (1901), 87–99 | MR | Zbl
[10] Shirokov P. A., “Interpretation and Metric of Quadratic Geometries”, Selected Works on Geometry, Kazan, 1966, 15–179 (in Russian) | MR
[11] Kostin A. V., Sabitov I. K., “Smarandache theorem in hyperbolic geometry”, J. of Math. Physics, Analysis, Geometry, 10:2 (2014), 221–232 | DOI | Zbl
[12] Poznyak É. G., Popov A. G., “The Geometry of the sine-Gordon Equation”, Journal of Mathematical Sciences, 70:2 (1994), 1666–1684 | DOI | MR | MR | Zbl
[13] Chern S. S., “Geometrical interpretation of sinh-Gordon equation”, Annales Polonici Mathematici, 39 (1981), 63–69 | DOI | MR | Zbl
[14] Galeeva R. F., Sokolov D. D., “On the Geometric Interpretation of Solutions of Some Nonlinear Equations of Mathematical Physics”, Research on the Theory of Surfaces in Riemann Spaces, L., 1984, 8–22 (in Russian) | MR
[15] Klotz-Milnor T., “Harmonic maps and classical surface theory in Minkowski 3-Space”, Trans. Amer. Math. Soc., 280:1 (1983), 161–185 | DOI | MR | Zbl
[16] Rosenfeld B. A., Maryukova N. E., “Surfaces of constant curvature and Geometric interpretation of the Klein–Gordon, sin-Gordon and sinh-Gordon equation”, Publications de L'Institut Mathématique, 61(75) (1997), 119–132 | MR | Zbl
[17] Lopez R., “Differential geometry of curves and surfaces in Lorentz–Minkowski space”, Int. Eletron. J. of Geometry, 7:1 (2014), 44–107 | MR | Zbl
[18] Barros M., Caballero M., Ortega M., “Rotational surfaces in $L^3$ and solutions of the nonlinear sigma model”, Communication in Math. Physics, 290:2 (2009), 437–477 | DOI | MR | Zbl
[19] Albujer A. L., Caballero M., “Geometric properties of same mean curvature in $R^3$ and $L^3$”, J. of Math. Anal. Appl., 445:1 (2017), 1013–1024 | DOI | MR | Zbl
[20] Lopez R., Kaya S., “New examples of maximal surfaces in Lorentz–Minkowski space”, Kyoshu J. of Math., 71:2 (2017), 311–327 | DOI | MR | Zbl
[21] Poznyak É. G., Shikin E. V., Differential Geometry, Moscow State Univ. Publ., M., 1990, 384 pp. (in Russian)
[22] Vygodskii M. Ya., Differential Geometry, M.–L., 1949, 512 pp. (in Russian)
[23] Kostin A. V., “The Regularity of Asymptotic Lines on the de Sitter Pseudosphere”, Geometry Days in Novosibirsk – 2012, Abstracts of the Inter. Conf. dedicated to 100th anniversary of A. D. Aleksandrov, Sobolev Institute of Mathematics of Siberian Branch of the RAS, Novosibirsk, 2012, 48–49 (in Russian)
[24] Kostin A. V., Kostina N. N., “On the Evolutes of some Curves on the Pseudo-Euclidean Plane”, Proceedings of the Participants of the International School-Seminar on Geometry and Analysis in Memory of N. V. Efimov (Abrau-Durso, 2004), 34–35 (in Russian)
[25] Kostin A. V., “On Asymptotic Nets on Pseudospheres”, Geometry Days in Novosibirsk – 2014, Abstracts of the Inter. Conf. dedicated to 85th anniversary of academian Yu. G. Reshetnyak, Sobolev Institute of Mathematics of Siberian Branch of the RAS, Novosibirsk, 2014, 41 (in Russian) | MR
[26] Kostin A. V., Kostina N. N., “On the Interpretation of Asymptotic Directions”, Proceedings International Youth School-Seminar «Modern Geometry and its Applications», International Scientific Conference «Modern Geometry and its Applications», Kazan Univ. Publ., Kazan, 2017, 75–76 (in Russian)