@article{VMJ_2019_21_1_a0,
author = {A. V. Abramyan and V. S. Pilidi},
title = {Criterion of uniform invertibility of regular approximations of one-dimensional singular integral operators on a {piecewise-Lyapunov} contour},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--15},
year = {2019},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a0/}
}
TY - JOUR AU - A. V. Abramyan AU - V. S. Pilidi TI - Criterion of uniform invertibility of regular approximations of one-dimensional singular integral operators on a piecewise-Lyapunov contour JO - Vladikavkazskij matematičeskij žurnal PY - 2019 SP - 5 EP - 15 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a0/ LA - ru ID - VMJ_2019_21_1_a0 ER -
%0 Journal Article %A A. V. Abramyan %A V. S. Pilidi %T Criterion of uniform invertibility of regular approximations of one-dimensional singular integral operators on a piecewise-Lyapunov contour %J Vladikavkazskij matematičeskij žurnal %D 2019 %P 5-15 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a0/ %G ru %F VMJ_2019_21_1_a0
A. V. Abramyan; V. S. Pilidi. Criterion of uniform invertibility of regular approximations of one-dimensional singular integral operators on a piecewise-Lyapunov contour. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/VMJ_2019_21_1_a0/
[1] Prößdorf S., Schmidt G., “A finite element collocation method for singular integral equations”, Math. Nachr., 100 (1981), 33–60 | DOI | MR | Zbl
[2] Silbermann B., “Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren”, Math. Nachr., 104 (1981), 137–146 | DOI | MR | Zbl
[3] Hagen R., Roch S., Silbermann B., $C\sp{\ast}$-algebras and numerical analysis, Marcel Dekker, N.Y., 2001, 376 pp. | MR
[4] Pilidi V. S., “On Uniform Invertibility of Regular Approximations of One-Dimensional Singular Integral Operators with Piecewise Continuous Coefficients”, Dokl. Akad. Nauk SSSR, 307:2 (1989), 280–283 (in Russian)
[5] Pilidi V. S., “A Method for Excision of Singularity for Bisingular Integral Operators with Continuous Coefficients”, Funct. Anal. Appl., 23:1 (1989), 82–83 (in Russian) | MR | Zbl
[6] Pilidi V. S., “A Criterion for Uniform Invertibility of Regular Approximations of One-Dimensional Singular Integral Operators with Piecewise Continuous Coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 54:6 (1990), 1270–1294 (in Russian)
[7] Pilidi V. S., “On Uniform Invertibility of Regular Approximations of One-Dimensional Singular Integral Operators in Variable Exponent Spaces”, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2011, no. 1, 12–17 (in Russian)
[8] Abramyan A. V., Pilidi V. S., “On Uniform Invertibility of Regular Approximations of One-Dimensional Singular Integral Operators with Piecewise Continuous Coefficients in Variable Exponent Spaces”, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2013, no. 5, 5–10 (in Russian)
[9] Gokhberg I. Ts., Fel'dman I. A., Convolution Equations and Projection Methods for Their Solution, Nauka, M., 1971, 432 pp. (in Russian)
[10] Muskhelishvili N. I., Singular Integral Equations, 3rd ed., Nauka, M., 1968, 513 pp. (in Russian)
[11] Gokhberg I. Ts., Krupnik N. Y., Introduction to the Theory of One-Dimensional Singular Integral Operators, Shtiintsa, Kishinev, 1973, 426 pp. (in Russian) | MR
[12] Edvards R. E., Functional Analysis, Mir, M., 1969, 1072 pp. (in Russian)
[13] Simonenko I. B., “A New General Method of Investigating Linear Operator Equations of Singular Integral Equation Type. I”, Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965), 567–586 (in Russian) | Zbl