@article{VMJ_2018_20_4_a7,
author = {A. Yu. Trynin},
title = {Convergence of the {Lagrange{\textendash}Sturm{\textendash}Liouville} processes for continuous functions of bounded variation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {76--91},
year = {2018},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a7/}
}
TY - JOUR AU - A. Yu. Trynin TI - Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 76 EP - 91 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a7/ LA - ru ID - VMJ_2018_20_4_a7 ER -
A. Yu. Trynin. Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 4, pp. 76-91. http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a7/
[1] Kramer H. P., “A generalized sampling theorem”, J. Math. Phus., 38 (1959), 68–72 | DOI | MR | Zbl
[2] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zapiski Leningrad. ped. in-ta im. A. I. Gertsena, 166 (1958), 213–219 (in Russian)
[3] Novikov I. Ya., Stechkin S. B., “Basic Wavelet Theory”, Russian Mathematical Surveys, 53:6 (1998), 1159–1231 | DOI | DOI | MR | Zbl
[4] Novikov I. Ya., Stechkin S. B., “Basic Constructions of Wavelets”, Fundamental and Applied Mathematics, 3:4 (1997), 999–1028 (in Russian) | MR | Zbl
[5] Stenger F., Numerical Metods Based on Sinc and Analytic Functions, Springer, N. Y., 1993, 565 pp. | MR
[6] Dobeshi I., Ten Lectures on Wavelets, Society for Industrial and Appled Mathematics, Philadelphia, Pennsylvana, 1992 | MR
[7] Oren E. Livne, Achi E. Brandt, “MuST: The multilevel sinc transform”, SIAM J. Sci. Comput., 33:4 (2011), 1726–1738 | DOI | MR | Zbl
[8] Coroianu L., Sorin G. Gal., “Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels”, Demonstratio Mathematica, 49:1 (2016), 38–49 | DOI | MR | Zbl
[9] Richardson M., Trefethen L., “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | MR | Zbl
[10] Khosrow M., Yaser R., Hamed S., “Numerical Solution for First Kind Fredholm Integral Equations by Using Sinc Collocation Method”, Int. J. Appl. Phy. Math., 6:3 (2016), 120–128 | DOI
[11] Trynin A. Yu., “Necessary and Sufficient Conditions for the Uniform on a Segment Sinc-Approximations Functions of Bounded Variation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:3 (2016), 288–298 (in Russian) | DOI | MR
[12] Trynin A. Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, Sampling Theory in Signal and Image Processing, 7:3 (2008), 263–270 | MR | Zbl
[13] Marwa M. Tharwat, “Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier”, Calcolo: a Quarterly on Numerical Analysis and Theory of Computation, 51:3 (2014), 465–484 | DOI | MR
[14] Trynin A. Yu., “On the Estimation of the Approximation of Analytic Functions by an Interpolation Operator with Respect to Syncs”, Mathematics. Mechanics, 7 (2005), 124–127 (in Russian)
[15] Zayed A. I., Schmeisser G., New Perspectives on Approximation and Sampling Theory, Applied and Numerical Harmonic Analysis, Springer Int. Publ. Switzerland, N. Y.–Dordrecht–London, 2014 | DOI
[16] Trynin A. Yu., “Estimates for the Lebesgue Functions and the Nevai Formula for the Sinc-Approximations of Continuous Functions on an Interval”, Siberian Mathematical Journal, 48:5 (2007), 929–938 | DOI | MR | Zbl
[17] Trynin A. Yu., “Tests for Pointwise and Uniform Convergence of Sinc Approximations of continuous functions on a Closed Interval”, Sbornik: Mathematics, 198:10 (2007), 1517–1534 | DOI | DOI | MR | Zbl
[18] Trynin A. Yu., “A Criterion for the Uniform Convergence of Sinc-Approximations on a Segment”, Russian Mathematics (Iz. VUZ), 52:6 (2008), 58–69 | DOI | MR | Zbl
[19] Sklyarov V. P., “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 183–192 | MR | Zbl
[20] Trynin A. Yu., “On Divergence of Sinc-Approximations Everywhere on $(0,\pi)$”, St. Petersburg Mathematical Journal, 22 (2011), 683–701 | DOI | MR | Zbl
[21] Trynin A. Yu., “On Some Properties of Sinc Approximations of Continuous Functions on the Interval”, Ufa Mathematical Journal, 7:4 (2015), 111–126 | DOI | MR
[22] Umakhanov A. Y., Sharapudinov I. I., “Interpolation of Functions by the Whittaker Sums and Their Modifications: Conditions for Uniform Convergence”, Vladikavkaz Math. J., 18 (2016), 61–70 | DOI | MR
[23] Umakhanov A. Y., Sharapudinov I. I., “Interpolation of Functions by Whittaker Sums and their Modifications: Conditions of Uniform Convergence”, Materialy 18th Intern. Saratov Winter School. «Modern Problems of the Theory of Functions and their Applications» (Saratov, 2016), 332–334
[24] Trynin A. Yu., “On Necessary and Sufficient Conditions for Convergence of Sinc-Approximations”, St. Petersburg Mathematical Journal, 27:5 (2016), 825–840 | DOI | MR | Zbl
[25] Trynin A. Yu., “Approximation of Continuous on a Segment Functions with the Help of Linear Combinations of Sincs”, Russian Mathematics (Iz. VUZ), 60:3 (2016), 63–71 | DOI | MR | Zbl
[26] Trynin A. Yu., “A Generalization of the Whittaker–Kotel'nikov–Shannon Sampling Theorem for Continuous Functions on a Closed Interval”, Sbornik: Mathematics, 200:11 (2009), 1633–1679 | DOI | DOI | MR | Zbl
[27] Trynin A. Yu., “On Operators of Interpolation with Respect to Solutions of a Cauchy Problem and Lagrange–Jacobi Polynomials”, Izvestiya: Mathematics, 75:6 (2011), 1215–1248 | DOI | DOI | MR | Zbl
[28] Trynin A. Yu., “On the Absence of Stability of interpolation in Eigenfunctions of the Sturm–Liouville Problem”, Russian Mathematics (Iz. VUZ), 44:9 (2000), 58–71 | MR | Zbl
[29] Trynin A. Yu., “Differential Properties of Zeros of Eigenfunctions of the Sturm–Liouville Problem”, Ufa Mathematical Journal, 3:4 (2011), 130–140 | MR | Zbl
[30] Trynin A. Yu., “On Inverse Nodal Problem for Sturm–Liouville Operator”, Ufa Mathematical Journal, 5:4 (2013), 112–124 | DOI | MR
[31] Trynin A. Yu., “The Divergence of Lagrange Interpolation Processes in Eigenfunctions of the Sturm–Liouville Problem”, Russian Mathematics (Iz. VUZ), 54:11 (2010), 66–76 | DOI | MR | Zbl
[32] Trynin A. Yu., “Localization Principle for Lagrange–Sturm–Liouville Processes”, Mathematics. Mechanics, 8 (2005), 137–140 (in Russian)
[33] Trynin A. Yu., “On one Integral Sign of Convergence of Lagrange–Sturm–Liouville Processes”, Mathematics. Mechanics, 9 (2007), 94–97
[34] Trynin A. Yu., Teorema otschetov na otrezke i ee obobscheniya, LAP LAMBERT Acad. Publ., 2016, 488 pp. (in Russian)
[35] Golubov B. I., “Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals”, Mathematical Notes, 91:3–4 (2012), 479–486 | DOI | MR | Zbl
[36] Dyachenko M. I., “On a Class of Summability Methods for Multiple Fourier Series”, Sbornik: Mathematics, 204:3 (2013), 307–322 | DOI | MR | Zbl
[37] Maksimenko I. E., Skopina M. A., “Multidimensional Periodic Wavelets”, St. Petersburg Mathematical Journal, 15:2 (2004), 165–190 | DOI | MR | Zbl
[38] Dyachenko M. I., “Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series”, Mathematical Notes, 76:5 (2004), 673–681 | DOI | MR | Zbl
[39] Borisov D. I., Dmitriev S. V., “On the spectral stability of kinks in 2D Klein–Gordon model with parity-time-symmetric perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342 | DOI | MR | Zbl
[40] Golubov B. I., “Absolute Convergence of Multiple Fourier Series”, Mathematical Notes, 37:1 (1985), 8–15 | DOI | MR | Zbl | Zbl
[41] Borisov D. I., Znojil M., “On Eigenvalues of a $\mathscr{PT}$-Symmetric Operator in a thin Layer”, Sbornik: Mathematics, 208:2 (2017), 173–199 | DOI | DOI | MR | Zbl
[42] Ivannikova T. A., Timashova E. V., Shabrov S. A., “On Necessary Conditions for a Minimum of a Quadratic Functional with a Stieltjes Integral and Zero Coefficient of the Highest Derivative on the Part of the Interval”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:2(1) (2013), 3–8 (in Russian) | Zbl
[43] Farkov Yu. A., “On the Best Linear Approximation of Holomorphic Functions”, Journal of Mathematical Sciences, 218:5 (2016), 678–698 | DOI | MR | MR | Zbl
[44] Sansone D., Ordinary Differential Equations, v. 1, 2, Foreign Languages Publ. House, M., 1953