@article{VMJ_2018_20_4_a2,
author = {M. N. Gurov and V. A. Nogin},
title = {$L_p-L_q$-estimates for potential-type operators with oscillating kernels},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {35--42},
year = {2018},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a2/}
}
M. N. Gurov; V. A. Nogin. $L_p-L_q$-estimates for potential-type operators with oscillating kernels. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a2/
[1] Samko S. G., Hypersingular Integrals and Their Applications, Internat. Series «Analytical Methods and Special Functions», 5, Taylor and Frances, London, 2002, 376 pp. | MR | Zbl
[2] Stein E. M., Harmonic Analysis: Real-variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, 355 pp. | MR
[3] Betilgiriev M. A., Karasev D. N., Nogin V. A., “$L_p-L_q$-estimates for some potential type operators with oscillating kernels”, Fract. Calc. Appl. Anal., 7:2 (2004), 213–241 | MR | Zbl
[4] Börjeson L., “Estimates for the Bochner–Riesz operator with negative index”, Indiana Univ. Math. J., 35:2 (1986), 225–233 | DOI | MR | Zbl
[5] Karapetyants A. N., Karasev D. N., Nogin V. A., “$L_p-L_q$-estimates for some fractional acoustic potentials and some related operators”, Fract. Calc. Appl. Anal., 7:1 (2005), 155–172 | MR
[6] Karasev D. N., Nogin V. A., “On the boundness of some potential-type operators with oscillating kernels”, Math. Nachr., 278:5 (2005), 554–574 | DOI | MR | Zbl
[7] Gurov M. N., Nogin V. A., “$L_p-L_q$-estimates for Generalized Riss Potentials with Oscillating Kernels”, Vladikavkaz Math. J., 19:2 (2017), 3–10 (in Russian) | DOI | MR
[8] Karapetyants A. N., Karasev D. N., Nogin V. A., “Estimates for Some Potential-Type Operators with Oscillating Kernels”, Proceedings of National Academy of Sciences of Armenia, 38:2 (2003), 37–62 (in Russian) | MR | Zbl
[9] Karasev D. N., “$L_p-L_q$-Estimates for Some Potential Type Operators with Oscillating Kernels”, Differential Equations, 39:3 (2003), 453–456 | DOI | MR | Zbl