. An article by L. Carleson and S. Jacobs (1972), investigated the problem of the properties of elements on which the infimum $\inf\{\|\bar\omega-x\|_{L_\infty (T)}:\ x \in H_\infty ^0\}$ for a given $\omega\in L_q (T)$ is attained. The hypothesis of the authors that the relationship between extremal elements is similar to that of the function $\omega$ and its projection onto $H_q$ is partially confirmed in a paper by V. G. Ryabykh (2006). Some properties of e. e. for $l_\omega $, when $\omega$ is a polynomial, were studied in a paper by Kh. Kh Burchaev, G. Yu. Ryabykh V. G. Ryabykh (2017). In this paper, relying on the main result of the last article and using the method of successive approximations, the following is proved: if $\omega \in L_ {q^*}(T)$ and $q \le q^*<\infty$, then $F\in H_{(p-1) q^*}$ and $X\in H_{q^*}$; if the derivative $\omega^{(n-1)}\in{\rm Lip}(\alpha,T)$ with $0<\alpha <1$, then $F = Bf$, where $B$ is the Blaschke product, $f$ is an external function, with $(|f(t)|^p)^{(n-1)} \in {\rm Lip}(\alpha, T)$. If the function $\omega$ is analytic outside the unit circle, then e. e is analytic in the same circle. The listed results clarify and complement similar results obtained in an above mentioned paper by V. G. Ryabykh. It is also proved that the extremal function for $l_\omega\in (H_q)^* $ exists and has the same smoothness as the generator function $\omega$, whenever $1/(n + 1)<\delta <1/n$, $\omega\in H_\infty \bigcap {\rm Lip}(\beta, T) $, $\beta=1/\delta-n +\nu <1$, and $\nu>0$.
@article{VMJ_2018_20_4_a0,
author = {Kh. Kh. Burchaev and G. Yu. Ryabykh},
title = {Properties of extremal elements in the duality relation for {Hardy} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--19},
year = {2018},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a0/}
}
TY - JOUR AU - Kh. Kh. Burchaev AU - G. Yu. Ryabykh TI - Properties of extremal elements in the duality relation for Hardy spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 5 EP - 19 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a0/ LA - ru ID - VMJ_2018_20_4_a0 ER -
Kh. Kh. Burchaev; G. Yu. Ryabykh. Properties of extremal elements in the duality relation for Hardy spaces. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 4, pp. 5-19. http://geodesic.mathdoc.fr/item/VMJ_2018_20_4_a0/
[1] Garnett J., Ogranichennye Analiticheskie Funktsii, Mir, M., 1984, 469 pp. (in Russian)
[2] Carleson L., Jacobs S., “Best uniform approximation by analytic functions”, Arc. Mat., 10:2 (1972), 219–229 | DOI | MR | Zbl
[3] Ryabykh V. G., “Approximation of Non-Analytic Functions by Analytic Functions”, Sbornik: Mathematics, 197:2 (2006), 225–233 | DOI | DOI | MR | Zbl
[4] Burchaev Kh. H., Ryabykh V. G., Ryabykh G. Yu., “On an Extremal Problem in Hardy Space $H_p$, ${0
\infty}$”, Siberian Mathematical Journal, 58:3 (2017), 392–404 | DOI | DOI | MR | Zbl[5] Duren P. L. Romberg B. W., Shields A. L., “Linear functionals on $H_{p} $ space with $0
1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl[6] Gofman M., Banach Spaces of Analytic Functions, Foreign Languages Publishing House, M., 1963, 311 pp. (in Russian)
[7] Ryabykh V. G., “Extremal Problems for Summable Analytic Functions”, Sib. Mat. Zh., 27:3 (1986), 212–217 (in Russian) | MR | Zbl
[8] Kantorovich L. V., Akilov G. P., Functional Analysis, Nauka, M., 1984, 750 pp. (in Russian)
[9] Burchaev Kh. Kh., Ryabykh V. G., Ryabykh G. Yu., “Some Properties of the Extremal Functions of Linear Functionals on Hardy and Bergman Spaces”, Studies in Mathematical Analysis, Differential Equations, and Mathematical Modeling, Math. Forum. Review of Science: The South of Russia, 9, SMI VSC RAS, Vladikavkaz, 2015, 125–139 (in Russian)