Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 3, pp. 57-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modified Cauchy problem is investigated for a four-dimensional second order equation of hyperbolic type with spectral parameter and with the Bessel operator. The equation contains a singular differential Bessel operator on all variables. To solve the formulated problem, a generalized Erdélyi–Kober fractional order operator is applied. To solve the problem, a generalized Erdélyi–Kober fractional order operator is applied. A formula is obtained for calculating the high order derivatives of the generalized operator Erdélyi–Kober, that is then used in the study of the problem. We also consider the confluent hypergeometric function of four variables, which generalizes the Humbert function; some properties of this function are proved. Taking into account the proven properties of the Erdélyi–Kober operator and the confluent hypergeometric function, the solution of the modified Cauchy problem is presented in a compact integral form that generalizes the Kirchhoff formula. The obtained formula allows us to see directly the nature of the dependence of the solution on the initial functions and, in particular, to establish the smoothness conditions for the classical solution. The paper also contains a brief historical introduction to differential equations with Bessel operators.
@article{VMJ_2018_20_3_a4,
     author = {Sh. T. Karimov and A. K. Urinov},
     title = {Solution of the {Cauchy} problem for the four-dimensional hyperbolic equation with {Bessel} operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {57--68},
     year = {2018},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a4/}
}
TY  - JOUR
AU  - Sh. T. Karimov
AU  - A. K. Urinov
TI  - Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 57
EP  - 68
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a4/
LA  - ru
ID  - VMJ_2018_20_3_a4
ER  - 
%0 Journal Article
%A Sh. T. Karimov
%A A. K. Urinov
%T Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 57-68
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a4/
%G ru
%F VMJ_2018_20_3_a4
Sh. T. Karimov; A. K. Urinov. Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 3, pp. 57-68. http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a4/

[1] Eejler L., Integral Calculus, v. 3, GIFML, M., 1958, 447 pp.

[2] Reimann B., “Vercuch einer allgemeinen auffassung der integration und differentiation”, Ges. Math. Werke, Teubner, Leipzing, 1876, 331–334

[3] Poisson S. D., “Memoire sur L'integration des equations lineaires aux differences partielles”, J. l'Ecole Rog. Politechn., 1823, no. 12, 215–248

[4] Darboux G., Lecons sur la Theorie Generale des Surfaces et les Applications Geometriques du Calcul Infinitesimal, v. 2, Gauthier-Villars, Paris, 1915 | MR | Zbl

[5] Trikomi F., On Linear Equations of Mixed Type, Gostezizdat, M.–L., 1947, 192 pp.

[6] Bitcadze A. V., Some Classes of Partial Differential Equations, Nauka, M., 1981, 448 pp.

[7] Smirnov M. M., Degenerate Elliptic and Hyperbolic Equations, Nauka, M., 1966, 292 pp.

[8] Nahushev A. M., Displacement Problems for Partial Differential Equations, Nauka, M., 2007, 287 pp.

[9] Carroll R. W., Showalter R. E., Singular and Degenerate Cauchy Problems, Academic Press, N. Y., 1976, 333 pp. | MR

[10] Salohitdinov M. S., Mirsaburov M., Nonlocal Problems for Mixed-Type Equations with Singular Coefficients, Universitet, Toshkent, 2005, 224 pp.

[11] Weinstein A., “On the wave equation and the equation of Euler-Poisson”, Wave Motion and Vibration Theory, Proc. Sympos. Appl. Math., 5, McGraw-Hill, N. Y., 1954, 137–147 | DOI | MR

[12] Young E. C., “On a generalized Euler–Poisson–Darboux equation”, J. Math. Mech., 18:12 (1969), 1167–1175 | MR | Zbl

[13] Kipriyanov I. A., Ivanov L. A., “The Cauchy Problem for the Euler–Poisson–Darboux Equation in a Symmetric Space”, Mathematics of the USSR-Sbornik, 52:1 (1985), 41–51 | DOI | MR | Zbl

[14] Tersenov S. A., Introduction to the Theory of Equations Degenerating at the Boundary, Novosibirsk, 1973, 144 pp.

[15] Aldashev S. A., Boundary Value Problems for Multidimensional Hyperbolic and Mixed Equations, Izd-vo «Gylym», Almaty, 1994, 168 pp.

[16] Ibragimov N. Kh., Oganesyan A. O., “The hierarchy of Huygens Equations in Spaces with a Non-Trivial Conformal Group”, Russian Math. Surveys, 46:3 (1991), 137–176 | DOI | MR | Zbl

[17] Fox D. W., “The solution and Huygens' principle for a singular Cauchy problem”, J. Math. Mech., 8 (1959), 197–220 | MR

[18] Lyakhov L. N., Polovinkin I. P., Shishkina E. L., “Formulas for the Solution of the Cauchy Problem for a Singular Wave Equation with Bessel Time Operator”, Doklady Mathematics, 90:3 (2014), 737–742 | DOI | DOI | MR | Zbl

[19] Lowndes J. S., “A generalization of the Erdélyi–Kober operators”, Proc. Edinb. Math. Soc., 17:2 (1970), 139–148 | DOI | MR | Zbl

[20] Urinov A. K., Karimov S. T., “Solution of the cauchy problem for generalized Euler–Poisson–Darboux equation by the method of fractional integrals”, Progress in Partial Differential Equations, 44, Springer Intern. Publ., 2013, 321–337 | DOI | MR | Zbl

[21] Karimov Sh. T., “Ob odnom metode reshenija zadachi Koshi dlja obobshhennogo uravnenija Jejlera–Puassona–Darbu”, Uzbekskij matematicheskij zhurnal, 2013, no. 3, 57–69 (in Russian)

[22] Karimov Sh. T., “Reshenie zadachi Koshi dlja mnogomernogo giperbolicheskogo uravnenija s singuljarnymi kojefficientami metodom drobnyh integralov”, Doklady AN RUz, 2013, no. 1, 11–13

[23] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | DOI | MR | Zbl

[24] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Their Applications, Nauka i tehnika, Minsk, 1987, 702 pp. (in Russian)

[25] Lowndes J. S., “An application of some fractional integrals”, Glasgow Math. J., 20 (1979), 35–41 | DOI | MR | Zbl

[26] Prudnikov A. P., Brychkov Ju. A., Marichev O. I., Integrals and series: Special functions, Nauka, M., 1988, 752 pp. | MR

[27] Jain R. N., “The confluent hypergeometric functions of three variables”, Proc. Nat. Acad. Sci. India, A36:2 (1966), 395–408 | MR | Zbl