@article{VMJ_2018_20_3_a3,
author = {O. A. Ivanova and S. N. Melikhov},
title = {The commutant of the {Pommiez} operator in a space of entire functions of exponential type and polynomial growth on the real line},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {48--56},
year = {2018},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a3/}
}
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - The commutant of the Pommiez operator in a space of entire functions of exponential type and polynomial growth on the real line JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 48 EP - 56 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a3/ LA - ru ID - VMJ_2018_20_3_a3 ER -
%0 Journal Article %A O. A. Ivanova %A S. N. Melikhov %T The commutant of the Pommiez operator in a space of entire functions of exponential type and polynomial growth on the real line %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 48-56 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a3/ %G ru %F VMJ_2018_20_3_a3
O. A. Ivanova; S. N. Melikhov. The commutant of the Pommiez operator in a space of entire functions of exponential type and polynomial growth on the real line. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 3, pp. 48-56. http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a3/
[1] Ivanova O. A., Melikhov S. N., “On Operators Commuting with a Pommiez type Operator in Weighted Spaces of Entire Functions”, St. Petersburg Math. J., 28:2 (2017), 209–224 | DOI | MR | Zbl
[2] Ivanova O. A., Melikhov S. N., “On an Algebra of Analytic Functionals Connected with a Pommiez Operator”, Vladikavkaz Math. J., 18:4 (2016), 34–40 (in Russian) | DOI | MR
[3] Ivanova O. A., Melikhov S. N., “On Invarint Subspaces of the Pommiez Operator in Spaces of Entire Functions of Exponential Type”, Complex Analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 142, VINITI, M., 2017, 111–120 (in Russian)
[4] Ivanova O. A., Melikhov S. N., “On the Completeness of Orbits of a Pommiez Operator in Weighted (LF)-Spaces of Entire Functions”, Complex Analysis and Operator Theory, 11 (2017), 1407–1424 | DOI | MR | Zbl
[5] Tkachenko V. A., “Invariant Subspaces and Unicellularity of Operators of Generalized Integration in Spaces of Analytic Functionals”, Math. Notes, 22:2 (1977), 613–618 | DOI | MR
[6] Tkachenko V. A., “Operators that Commute with Generalized Integration in Spaces of Analytic Functionals”, Math. Notes, 25:2 (1979), 141–146 | DOI | MR | Zbl | Zbl
[7] Krasichkov-Ternovskii I. F., “Invariant Subspaces of Analytic Functions. III. On the Extension of Spectral Synthesis”, Math. USSR-Sbornik, 17 (1972), 327–348 | DOI | MR
[8] Karaev M. T., “Invariant subspaces, cyclic vectors, commutant and extended eigenvectors of some convolution operators”, Methods Funct. Anal. Topology, 11:1 (2005), 48–59 | MR | Zbl
[9] Karaev M. T., “Duhamel Algebras and Applications”, Functional Analysis and its Applications, 52:1 (2018), 1–8 | DOI | DOI | MR | Zbl
[10] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer, 1983, 391 pp. | MR
[11] Binderman Z., “Functional shifts induced by right invertible operators”, Math. Nachr., 157 (1992), 211–224 | DOI | MR | Zbl
[12] Dimovski I. N., Hristov V. Z., “Commutants of the Pommiez operator”, Int. J. Math. and Math. Science, 2005, no. 8, 1239–1251 | DOI | MR | Zbl
[13] Muskheleshvili N. I., Some Basic Problems of the Mathematical Elasticity Theory, GRFML, M., 1966, 708 pp. (in Russian) | MR
[14] Edvards R. E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, N. Y., 1965, 791 pp. | MR
[15] Titchmarsh E. C., “The zeros of certain integral function”, Proc. London Math. Soc., 25 (1926), 283–302 | DOI | MR | Zbl
[16] Mikusiński J., Operational Calculus, Pergamon Press, N. Y., 1959, 495 pp. | MR | MR | Zbl
[17] Kalish G. K., “A Functional Analysis Proof of Titchmarsh's Theorem on Convolution”, J. Math. Anal. Appl., 5 (1962), 176–183 | DOI | MR
[18] Dimovski I., Convolutional Calculus, Kluwer, London, 1990, 184 pp. | MR | Zbl