@article{VMJ_2018_20_3_a1,
author = {R. M. Gadzhimirzaev},
title = {Approximative properties of special series in {Meixner} polynomials},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--36},
year = {2018},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a1/}
}
R. M. Gadzhimirzaev. Approximative properties of special series in Meixner polynomials. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 3, pp. 21-36. http://geodesic.mathdoc.fr/item/VMJ_2018_20_3_a1/
[1] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical Orthogonal Polynomials of a Discrete Variable, Nauka, M., 1985, 216 pp. (in Russian) | MR
[2] Sharapudinov I. I., Polynomials Orthogonal on Grids, Izd-vo DGPU, Mahachkala, 1997, 255 pp. (in Russian)
[3] Bateman H., Erdelyi A., Higher Transcendental Functions, v. 2, McGraw-Hill Book Company, Inc., N. Y.–Toronto–London, 1953 | MR | MR
[4] Gadzhieva Z. D., Mixed Series by Meixner Polynomials, PhD thesis, Saratov State. Univ., Saratov, 2004 (in Russian)
[5] Sharapudinov I. I., “Mixed Series by Classical Orthogonal Polynomials”, Dagestan Electronic Mathematical Reports, 2015, no. 3, 1–254 (in Russian) | DOI | MR
[6] Sharapudinov I. I., “Some Special Series by General Laguerre Polynomials and Fourier Series by Laguerre Polynomials, Orthogonal in Sobolev Sense”, Dagestan Electronic Mathematical Reports, 2015, no. 4, 32–74 (in Russian) | DOI
[7] Gadzhimirzaev R. M., “The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-Type Inner Product”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:4 (2016), 388–395 (in Russian) | DOI | MR
[8] Gadzhimirzaev R. M., “The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-Type Inner Product”, XVIII International Saratov Winter School «Modern Problems of Function Theory and Their Applications» (2016), 102–104 (in Russian)