@article{VMJ_2018_20_2_a5,
author = {A. M. Dabboorasad and E. Yu. Emelyanov},
title = {Unbounded convergence in the convergence vector lattices: a survey},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {49--56},
year = {2018},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a5/}
}
TY - JOUR AU - A. M. Dabboorasad AU - E. Yu. Emelyanov TI - Unbounded convergence in the convergence vector lattices: a survey JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 49 EP - 56 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a5/ LA - en ID - VMJ_2018_20_2_a5 ER -
A. M. Dabboorasad; E. Yu. Emelyanov. Unbounded convergence in the convergence vector lattices: a survey. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 49-56. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a5/
[1] Aliprantis C. D., Burkinshaw O., Locally Solid Riesz Spaces, Acad. Press, N. Y., 1978, xii+198 pp. | MR | Zbl
[2] Ayd{\i}n A., Unbounded $p\tau$-Convergence in Lattice-Normed Locally Solid Riesz Spaces, arXiv: 1711.00734
[3] Ayd{\i}n A., Compact Operators with Convergence in Lattice-Normed Locally Solid Riesz Spaces, arXiv: 1801.00919
[4] Ayd{\i}n A., Emelyanov E. Y., Erkurşun-Özcan N., Marabeh M. A. A., Unbounded $p$-Sonvergence in Lattice-Normed Vector Lattices, arXiv: 1609.05301v3
[5] Ayd{\i}n A., Emelyanov E. Y., Erkurşun-Özcan N., Marabeh M. A. A., “Compact-like operators in lattice-normed spaces”, Indag. Math. (N. S.), 29 (2018), 633–656 | DOI | MR | Zbl
[6] Ayd{\i}n A., Gorokhova S. G., Gul H., “Nonstandard hulls of lattice-normed ordered vector spaces”, Turkish J. of Math., 42 (2018), 155–163 | DOI | MR
[7] Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A., Order convergence in infinite-dimensional vector lattices is not topological, arXiv: 1705.09883
[8] Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A., “$u\tau$-Convergence in locally solid vector lattices”, Positivity, 2018 (to appear) | DOI | MR
[9] Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A., “$um$-Topology in multi-normed vector lattices”, Positivity, 22 (2018), 653–667 | DOI | MR | Zbl
[10] Dales H. G., Polyakov M. E., “Multi-normed spaces”, Dissertationes Math. (Rozprawy Mat.), 488 (2012), 1–165 | DOI
[11] Deng Y., O'Brien M., Troitsky V. G., “Unbounded norm convergence in Banach lattices”, Positivity, 21 (2017), 963–974 | DOI | MR | Zbl
[12] Emelyanov E. Y., Erkurşun-Özcan N., Gorokhova S. G., “Komlós properties in Banach lattices”, Acta Mathematica Hungarica, 2018 (to appear) | MR
[13] Emelyanov E. Y., Marabeh M. A. A., “Two measure-free versions of the Brezis–Lieb lemma”, Vladikavkaz Math. J., 18:1 (2016), 21–25 | MR
[14] Ercan Z., Vural M., Towards a theory of unbounded locally solid Riesz spaces, arXiv: 1708.05288
[15] Gao N., “Unbounded order convergence in dual spaces”, J. Math. Anal. Appl., 419 (2014), 347–354 | DOI | MR | Zbl
[16] Gao N., Leung D. H., Xanthos F., “Duality for unbounded order convergence and applications”, Positivity, 2017 | DOI | MR
[17] Gao N., Troitsky V. G., Xanthos F., “$Uo$-convergence and its applications to Cesáro means in Banach lattices”, Isr. J. Math., 220 (2017), 649–689 | DOI | MR | Zbl
[18] Gao N., Xanthos F., “Unbounded order convergence and application to martingales without probability”, J. Math. Anal. Appl., 415 (2014), 931–947 | DOI | MR | Zbl
[19] Gorokhova S. G., “Intrinsic characterization of the space $c_0(A)$ in the class of Banach lattices”, Math. Notes, 60 (1996), 330–333 | DOI | MR | Zbl
[20] Gutman A. E., Koptev A. V., “Convergence-preserving maps and fixed-point theorems”, Math. Notes, 95 (2014), 738–742 | DOI | MR | Zbl
[21] Kandić M., Li H., Troitsky V. G., “Unbounded norm topology beyond normed lattices”, Positivity, 2017 (to appear) | DOI | MR
[22] Kandić M., Marabeh M. A. A., Troitsky V. G., “Unbounded Norm Topology in Banach Lattices”, J. Math. Anal. Appl., 451 (2017), 259–279 | DOI | MR | Zbl
[23] Kandić M., Taylor M. A., “Metrizability of minimal and unbounded topologies”, J. Math. Anal. Appl., 2018 (to appear) | DOI | MR
[24] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, xiv+446 pp. | MR | Zbl
[25] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and Applications, Kluwer Academic, N. Y., 1995, x+398 pp. | MR | Zbl
[26] Kusraev A. G., Kutateladze S. S., Boolean Valued analysis, Kluwer, Dordrecht, 1999, xii+322 pp. | MR | Zbl
[27] Kutateladze S. S., Fundamentals of Functional Analysis, Springer-Verlag, N.Y., 1996, xiv+276 pp. | MR
[28] Li H., Chen Z., “Some loose ends on unbounded order convergence”, Positivity, 22 (2018), 83–90 | DOI | MR | Zbl
[29] Marabeh M. A. A., “Brezis-Lieb lemma in convergence vector lattices”, Turkish J. of Math., 42 (2018), 1436–1442 | DOI | MR
[30] Preuss G., “Order convergence and convergence almost everywhere revisited”, Internat. J. Pure Appl. Math., 66 (2011), 33–51 | MR | Zbl
[31] Taylor M. A., Unbounded topologies and $uo$-convegence in locally solid vector lattices, arXiv: 1706.01575 | MR
[32] Taylor M. A., “Completeness of Unbounded Convergences”, Proc. Amer. Math. Soc., 146 (2018), 3413–3423 | DOI | MR | Zbl
[33] Zabeti O., “Unbounded absolute weak convergence in Banach lattices”, Positivity, 22 (2018), 501–505 | DOI | MR | Zbl