On the structure of the Boolean-valued universe
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The logical machinery is clarified which justifies declaration of hypotheses. In particular, attention is paid to hypotheses and conclusions constituted by infinitely many formulas. The formal definitions are presented for a Boolean-valued algebraic system and model of a theory, for the system of terms of the Boolean-valued truth value of formulas, for ascent and mixing. Logical interrelations are described between the ascent, mixing, and maximum principles. It is shown that every mixing with arbitrary weights can be transformed into a mixing with constant weight. The notion of restriction of an element of a Boolean-valued algebraic system is introduced and studied. It is proven that every Boolean-valued model of Set theory which meets the ascent principle has some multilevel structure analogous to von Neumann's cumulative hierarchy.
@article{VMJ_2018_20_2_a4,
     author = {A. E. Gutman},
     title = {On the structure of the {Boolean-valued} universe},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a4/}
}
TY  - JOUR
AU  - A. E. Gutman
TI  - On the structure of the Boolean-valued universe
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 38
EP  - 48
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a4/
LA  - ru
ID  - VMJ_2018_20_2_a4
ER  - 
%0 Journal Article
%A A. E. Gutman
%T On the structure of the Boolean-valued universe
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 38-48
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a4/
%G ru
%F VMJ_2018_20_2_a4
A. E. Gutman. On the structure of the Boolean-valued universe. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 38-48. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a4/