@article{VMJ_2018_20_2_a3,
author = {A. O. Vatulyan and L. V. Vasil'ev and V. O. Yurov},
title = {Restoration of parameters in the boundary conditions for an inhomogeneous cylindrical waveguide},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {29--37},
year = {2018},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a3/}
}
TY - JOUR AU - A. O. Vatulyan AU - L. V. Vasil'ev AU - V. O. Yurov TI - Restoration of parameters in the boundary conditions for an inhomogeneous cylindrical waveguide JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 29 EP - 37 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a3/ LA - ru ID - VMJ_2018_20_2_a3 ER -
%0 Journal Article %A A. O. Vatulyan %A L. V. Vasil'ev %A V. O. Yurov %T Restoration of parameters in the boundary conditions for an inhomogeneous cylindrical waveguide %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 29-37 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a3/ %G ru %F VMJ_2018_20_2_a3
A. O. Vatulyan; L. V. Vasil'ev; V. O. Yurov. Restoration of parameters in the boundary conditions for an inhomogeneous cylindrical waveguide. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 29-37. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a3/
[1] Yurko V. A., Introduction to the Theory of Inverse Spectral Problems, Fizmatlit, M., 2006, 384 pp. (in Russian)
[2] Gladwell G. M. L., Movahhedy M., “Reconstruction of mass-spring system from spectral data I: Theory”, Inverse problems in engineering, 1:2 (1995), 179–189 | DOI | MR
[3] Akhtyamov A. M., Theory of Identification of Boundary Conditions and its Applications, Fizmatlit, M., 2009, 272 pp. (in Russian)
[4] Akhtyamov A. M., Muftahov A. V., Akhtyamova A. A., “On the determination of the fixation and loading of one of the ends of a rod according to the natural frequencies of its oscillations”, Herald of the Udmurt University. Mathematics. Mechanics. Computers of Science, 3 (2013), 114–129 (in Russian) | Zbl
[5] Aitbaeva A. A., Ahtyamov A. M., “Identification of fixedness and loading of an end of the Euler–Bernoulli beam by the natural frequencies of its vibrations”, Journal of Applied and Industrial Mathematics, 11:1 (2017), 1–7 | DOI | MR | Zbl
[6] Vatulyan A. O., Vasilev L. V., “Determination of the parameters of an inhomogeneous beam elastic fixation”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, no. 3, 14–19 (in Russian)
[7] Morassi A., Dilena M., “On point mass identification in rods and beams from minimal frequency measurements”, Inverse Probl. Engrg., 10:3 (2002), 183–201 | DOI
[8] Grinchenko V. T., Meleshko V. V., Harmonic Oscillations and Waves in Elastic Bodies, “Nauk. dumka”, Kiev, 1981, 284 pp. | MR
[9] Shardakov I. N., Shestakov A. P., Cvetkov R. V., “Mathematical modeling of wave processes in main pipelines”, XVII Winter School on the Mechanics of Continuous Media, Abstracts of Reports (Perm, February 18–22, 2013), IMSS Uro RAN, 252 (in Russian) | MR
[10] Vatul'yan A. O., Yurov V. O., “On the dispersion relations for an inhomogeneous waveguide with attenuation”, Mech. Solids, 51:5 (2016), 576–582 | DOI | DOI
[11] Abzalimov R. R., Akhtyamov A. M., Diagnosis and Vibration Protection of Pipeline Systems and Storags, Ufa State Petroleum Technological University, 2006, 118 pp.
[12] Vatul'yan A. O., Yurov V. O., “On the properties of a dispersion set for an inhomogeneous cylindrical waveguide”, Vladikavkaz Math. J., 20:1 (2018), 50–60 (in Russian) | DOI | MR
[13] Aybinder A. B., Calculation of Main and Field Pipelines for Strength and Stability, Reference Book, Nedra, M., 1991, 287 pp.
[14] Kalitkin N. N., Numerical Methods, Tutorial, BHV-SPb, SPb., 2011, 592 pp.