On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 95-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of describing the space $I^\alpha(X)$ of functions representable by the Riesz potential ${I}^\alpha \varphi$ with density $\varphi$ in the given space $X.$ It is assumed that $X\subset \Phi'$, where $\Phi'$ is the space of distributions over the Lizorkin test function space $\Phi$, invariant with respect to Riesz integration, and the range $I^\alpha(X)$ is understood in the sense of distributions. In this general setting, we study the question under what assumptions on the space $X$ the inclusion of the element $f$ in to the range $I^\alpha (X) $ is equivalent to the convergence of the truncated hypersingular integrals $\mathbb D_\varepsilon^\alpha f$ in the space $X.$ For this purpose, this question is first investigated in the context of the topology of the space $ \Phi. $ Namely, for any linear subset $X$ in $\Phi'$ it is shown that the inclusion of $f$ into the range $I^\alpha (X)$ is equivalent to the convergence of truncated hypersingular integrals on the set $X$ in the topology of the space $\Phi'$. If $X$ is a Banach space, the passage from the inclusion into the range to the convergence of truncated hypersingular integrals in the norm is proved up to an additive polynomial term under the assumption that some special convolution is an identity approximation in the space $X$. It is known that the latter holds for many Banach function spaces and is valid for function spaces $X$ where the maximal operator is bounded. The inverse passage is proved for the Banach function space $X$ enjoying the property that the associated space $X'$ includes the Lizorkin test function space.
@article{VMJ_2018_20_2_a11,
     author = {S. G. Samko and S. M. Umarkhadzhiev},
     title = {On a characterisation of the space of {Riesz} potential of functions in {Banach} spaces with some \`a priori properties},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {95--108},
     year = {2018},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/}
}
TY  - JOUR
AU  - S. G. Samko
AU  - S. M. Umarkhadzhiev
TI  - On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 95
EP  - 108
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/
LA  - ru
ID  - VMJ_2018_20_2_a11
ER  - 
%0 Journal Article
%A S. G. Samko
%A S. M. Umarkhadzhiev
%T On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 95-108
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/
%G ru
%F VMJ_2018_20_2_a11
S. G. Samko; S. M. Umarkhadzhiev. On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 95-108. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/

[1] Lizorkin P. I., “Description of the spaces ${L}_p^r({R}^n)$ in terms of singular difference integrals”, Mathematics of the USSR-Sbornik, 10:1 (1970), 77–89 | DOI | MR | Zbl

[2] Samko S. G., “On spaces of Riesz potentials”, Mathematics of the USSR-Izvestiya, 10:5 (1976), 1089–1117 | DOI | MR | MR | Zbl

[3] Samko S. G., Umarkhadzhiev S. M., “Description of a space of Riesz potentials in terms of higher derivatives”, Soviet Mathematics (Izvestiya VUZ. Matematika), 24:11 (1980), 95–98 | MR | Zbl | Zbl

[4] Umarkhadzhiev S. M., “Generalization of a notion of grand Lebesgue space”, Soviet Mathematics (Izvestiya VUZ. Matematika), 58:4 (2014), 35–43 | DOI | MR | Zbl

[5] Umarkhadzhiev S. M., “Description of a space of Riesz potentials of functions from grand Lebesgue space on $\mathbb{R}^n$”, Math. Notes, 2018 | MR

[6] Chuvenkov A. F., “Sobolev-Orlicz spaces of fractional order”, Izv. Severo-Kavk. Nauchn. Tsentra Vysshei Shkoly, Ser. Estestv. Nauk, 1 (1978), 6–10 (in Russian) | MR

[7] Almeida A., “Inversion of the Riesz Potential Operator on Lebesgue Spaces with Variable Exponent”, Frac. Calc. Appl. Anal., 6:3 (2003), 311–327 | MR | Zbl

[8] Almeida A., Samko S., “Characterization of Riesz and Bessel potentials on variable Lebesgue spaces”, J. Function Spaces and Applic., 4:2 (2006), 113–144 | DOI | MR | Zbl

[9] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Academic Press Inc., Boston, 1988 | MR | Zbl

[10] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Appl. Numerical Harmonic Anal., Birkhauser, 2013 | MR | Zbl

[11] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., “The maximal function on variable ${L}^p$-spaces”, Ann. Acad. Scient. Fennicae. Math., 28 (2003), 223–238 | MR | Zbl

[12] Diening L., Harjulehto P., Hästö P., Ru̇žička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl

[13] Duoandikoetxea J., Fourier Analysis, Graduate Studies, 29, Amer. Math. Soc., Providence, R. I., 2001 | MR | Zbl

[14] Kerman R., Torchinsky A., “Integral inequalities with weights for the Hardy maximal function”, Stud. Math., 71 (1982), 277–284 | DOI | MR | Zbl

[15] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publ, Singapore, 1991, 233 pp. | MR | Zbl

[16] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral Operators in Non-standard Function Spaces, v. I, Variable Exponent Lebesgue and Amalgam Spaces, Birkhäser, 2015, 586 pp. | MR

[17] Kokilashvili V., Meskhi A., Samko S., “On the inversion and characterization of the Riesz potentials in the weighted Lebesgue spaces”, Memoirs on Differential Equations and Mahematical Physics, 29 (2003), 99–106 | MR

[18] Rafeiro H., Samko S., “Fractional integrals and derivatives: mapping properties”, Fract. Calc. Appl. Anal., 19:3 (2016), 580–607 | DOI | MR | Zbl

[19] Samko S. G., Hypersingular Integrals and their Applications, Analytical Methods and Special Functions, 5, Taylor Francis, London–N. Y., 2002, 358+xvii pp. | MR | Zbl

[20] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon Breach. Sci. Publ, London–N. Y., 1993, 1012 pp. | MR | Zbl

[21] Samko S. G., Umarkhadzhiev S. M., “Riesz fractional integrals in grand Lebesgue spaces”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl

[22] Samko S. G., Umarkhadzhiev S. M., “On grand Lebesgue spaces on sets of infinite measure”, Mathematische Nachrichten, 290:5–6 (2017), 913–919 | DOI | MR | Zbl

[23] Stein E. M., “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR

[24] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, xiii+695 pp. | MR | Zbl