@article{VMJ_2018_20_2_a11,
author = {S. G. Samko and S. M. Umarkhadzhiev},
title = {On a characterisation of the space of {Riesz} potential of functions in {Banach} spaces with some \`a priori properties},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {95--108},
year = {2018},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/}
}
TY - JOUR AU - S. G. Samko AU - S. M. Umarkhadzhiev TI - On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 95 EP - 108 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/ LA - ru ID - VMJ_2018_20_2_a11 ER -
%0 Journal Article %A S. G. Samko %A S. M. Umarkhadzhiev %T On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 95-108 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/ %G ru %F VMJ_2018_20_2_a11
S. G. Samko; S. M. Umarkhadzhiev. On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 95-108. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a11/
[1] Lizorkin P. I., “Description of the spaces ${L}_p^r({R}^n)$ in terms of singular difference integrals”, Mathematics of the USSR-Sbornik, 10:1 (1970), 77–89 | DOI | MR | Zbl
[2] Samko S. G., “On spaces of Riesz potentials”, Mathematics of the USSR-Izvestiya, 10:5 (1976), 1089–1117 | DOI | MR | MR | Zbl
[3] Samko S. G., Umarkhadzhiev S. M., “Description of a space of Riesz potentials in terms of higher derivatives”, Soviet Mathematics (Izvestiya VUZ. Matematika), 24:11 (1980), 95–98 | MR | Zbl | Zbl
[4] Umarkhadzhiev S. M., “Generalization of a notion of grand Lebesgue space”, Soviet Mathematics (Izvestiya VUZ. Matematika), 58:4 (2014), 35–43 | DOI | MR | Zbl
[5] Umarkhadzhiev S. M., “Description of a space of Riesz potentials of functions from grand Lebesgue space on $\mathbb{R}^n$”, Math. Notes, 2018 | MR
[6] Chuvenkov A. F., “Sobolev-Orlicz spaces of fractional order”, Izv. Severo-Kavk. Nauchn. Tsentra Vysshei Shkoly, Ser. Estestv. Nauk, 1 (1978), 6–10 (in Russian) | MR
[7] Almeida A., “Inversion of the Riesz Potential Operator on Lebesgue Spaces with Variable Exponent”, Frac. Calc. Appl. Anal., 6:3 (2003), 311–327 | MR | Zbl
[8] Almeida A., Samko S., “Characterization of Riesz and Bessel potentials on variable Lebesgue spaces”, J. Function Spaces and Applic., 4:2 (2006), 113–144 | DOI | MR | Zbl
[9] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Academic Press Inc., Boston, 1988 | MR | Zbl
[10] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Appl. Numerical Harmonic Anal., Birkhauser, 2013 | MR | Zbl
[11] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., “The maximal function on variable ${L}^p$-spaces”, Ann. Acad. Scient. Fennicae. Math., 28 (2003), 223–238 | MR | Zbl
[12] Diening L., Harjulehto P., Hästö P., Ru̇žička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl
[13] Duoandikoetxea J., Fourier Analysis, Graduate Studies, 29, Amer. Math. Soc., Providence, R. I., 2001 | MR | Zbl
[14] Kerman R., Torchinsky A., “Integral inequalities with weights for the Hardy maximal function”, Stud. Math., 71 (1982), 277–284 | DOI | MR | Zbl
[15] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publ, Singapore, 1991, 233 pp. | MR | Zbl
[16] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral Operators in Non-standard Function Spaces, v. I, Variable Exponent Lebesgue and Amalgam Spaces, Birkhäser, 2015, 586 pp. | MR
[17] Kokilashvili V., Meskhi A., Samko S., “On the inversion and characterization of the Riesz potentials in the weighted Lebesgue spaces”, Memoirs on Differential Equations and Mahematical Physics, 29 (2003), 99–106 | MR
[18] Rafeiro H., Samko S., “Fractional integrals and derivatives: mapping properties”, Fract. Calc. Appl. Anal., 19:3 (2016), 580–607 | DOI | MR | Zbl
[19] Samko S. G., Hypersingular Integrals and their Applications, Analytical Methods and Special Functions, 5, Taylor Francis, London–N. Y., 2002, 358+xvii pp. | MR | Zbl
[20] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon Breach. Sci. Publ, London–N. Y., 1993, 1012 pp. | MR | Zbl
[21] Samko S. G., Umarkhadzhiev S. M., “Riesz fractional integrals in grand Lebesgue spaces”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl
[22] Samko S. G., Umarkhadzhiev S. M., “On grand Lebesgue spaces on sets of infinite measure”, Mathematische Nachrichten, 290:5–6 (2017), 913–919 | DOI | MR | Zbl
[23] Stein E. M., “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR
[24] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, xiii+695 pp. | MR | Zbl