Maximal commutative involutive algebras on a Hilbert space
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to involutive algebras of bounded linear operators on an infinite-dimensional Hilbert space. We study the problem of description of all subspaces of the vector space of all infinite-dimensional $n\times n$-matrices over the field of complex numbers for an infinite cardinal number $n$ that are involutive algebras. There are many different classes of operator algebras on a Hilbert space, including classes of associative algebras of unbounded operators on a Hilbert space. Most involutive algebras of unbounded operators, for example, $\sharp$-algebras, $EC^\sharp$-algebras and $EW^\sharp$-algebras, involutive algebras of measurable operators affiliated with a finite (or semifinite) von Neumann algebra, we can represent as algebras of infinite-dimensional matrices. If we can describe all maximal involutive algebras of infinite-dimensional matrices, then a number of problems of operator algebras, including involutive algebras of unbounded operators, can be reduced to problems of maximal involutive algebras of infinite-dimensional matrices. In this work we give a description of maximal commutative involutive subalgebras of the algebra of bounded linear operators in a Hilbert space as the algebras of infinite matrices.
@article{VMJ_2018_20_2_a1,
     author = {F. N. Arzikulov},
     title = {Maximal commutative involutive algebras on a {Hilbert} space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/}
}
TY  - JOUR
AU  - F. N. Arzikulov
TI  - Maximal commutative involutive algebras on a Hilbert space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 16
EP  - 22
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/
LA  - ru
ID  - VMJ_2018_20_2_a1
ER  - 
%0 Journal Article
%A F. N. Arzikulov
%T Maximal commutative involutive algebras on a Hilbert space
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 16-22
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/
%G ru
%F VMJ_2018_20_2_a1
F. N. Arzikulov. Maximal commutative involutive algebras on a Hilbert space. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 16-22. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/