Maximal commutative involutive algebras on a Hilbert space
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 16-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to involutive algebras of bounded linear operators on an infinite-dimensional Hilbert space. We study the problem of description of all subspaces of the vector space of all infinite-dimensional $n\times n$-matrices over the field of complex numbers for an infinite cardinal number $n$ that are involutive algebras. There are many different classes of operator algebras on a Hilbert space, including classes of associative algebras of unbounded operators on a Hilbert space. Most involutive algebras of unbounded operators, for example, $\sharp$-algebras, $EC^\sharp$-algebras and $EW^\sharp$-algebras, involutive algebras of measurable operators affiliated with a finite (or semifinite) von Neumann algebra, we can represent as algebras of infinite-dimensional matrices. If we can describe all maximal involutive algebras of infinite-dimensional matrices, then a number of problems of operator algebras, including involutive algebras of unbounded operators, can be reduced to problems of maximal involutive algebras of infinite-dimensional matrices. In this work we give a description of maximal commutative involutive subalgebras of the algebra of bounded linear operators in a Hilbert space as the algebras of infinite matrices.
@article{VMJ_2018_20_2_a1,
     author = {F. N. Arzikulov},
     title = {Maximal commutative involutive algebras on a {Hilbert} space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--22},
     year = {2018},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/}
}
TY  - JOUR
AU  - F. N. Arzikulov
TI  - Maximal commutative involutive algebras on a Hilbert space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 16
EP  - 22
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/
LA  - ru
ID  - VMJ_2018_20_2_a1
ER  - 
%0 Journal Article
%A F. N. Arzikulov
%T Maximal commutative involutive algebras on a Hilbert space
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 16-22
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/
%G ru
%F VMJ_2018_20_2_a1
F. N. Arzikulov. Maximal commutative involutive algebras on a Hilbert space. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 16-22. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a1/

[1] Arzikulov F. N., “Infinite order and norm decompositions of $C^\ast$-algebras”, Int. J. of Math. Anal., 2:5 (2008), 255–262 | MR

[2] Arzikulov F. N., “Infinite order decompositions of $C^\ast$-algebras”, Springer-Plus, 5:1 (2016), 1–13 | DOI

[3] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Dover Publ., Inc., N. Y., 1993 | MR | MR | Zbl

[4] Inoue A., “On a class of unbounded operator algebras”, Pacific J. Math., 65:1 (1976), 77–95 | DOI | MR | Zbl

[5] Muratov M. A., Chilin V. I., Algebras of measurable and locally measurable operators, Matematyky ta'i'i Zastosuvannya, 89, Instytut Matematyky NAN Ukra'ny, Ky'iv, 2007, 390 pp.