@article{VMJ_2018_20_2_a0,
author = {A. V. Abanin and T. M. Andreeva},
title = {On the surjectivity of the convolution operator in spaces of holomorphic functions of a prescribed growth},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--15},
year = {2018},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a0/}
}
TY - JOUR AU - A. V. Abanin AU - T. M. Andreeva TI - On the surjectivity of the convolution operator in spaces of holomorphic functions of a prescribed growth JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 3 EP - 15 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a0/ LA - ru ID - VMJ_2018_20_2_a0 ER -
%0 Journal Article %A A. V. Abanin %A T. M. Andreeva %T On the surjectivity of the convolution operator in spaces of holomorphic functions of a prescribed growth %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 3-15 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a0/ %G ru %F VMJ_2018_20_2_a0
A. V. Abanin; T. M. Andreeva. On the surjectivity of the convolution operator in spaces of holomorphic functions of a prescribed growth. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 3-15. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a0/
[1] Korobeinik Yu. F., On the Solvability of Certain Classes of Linear Operator Equations in a Complex Domain, Yuzhnyi Federalnyi Universitet, Rostov-na-Donu, 2009, 251 pp. (in Russian)
[2] Melikhov S. N., Momm S., “Analytic solutions of convolution equations on convex sets with an obstacle in the boundary”, Math. Scand., 86:2 (2000), 293–319 | DOI | MR | Zbl
[3] Momm S., “A division problem in the space of entire functions of exponential type”, Ark. Mat., 32:1 (1994), 213–236 | DOI | MR | Zbl
[4] Abanin A. V., Ishimura R., Le Hai Khoi, “Surjectivity criteria for convolution operators in $A^{-\infty}$”, C. R. Acad. Sci. Paris, Ser. I, 348:5–6 (2010), 253–256 | DOI | MR | Zbl
[5] Abanin A. V., Ishimura R., Le Hai Khoi, “Convolution operators in $A^{-\infty}$ for convex domains”, Ark. Mat., 50:1 (2012), 1–22 | DOI | MR | Zbl
[6] Abanin A. V., Ishimura R., Le Hai Khoi, “Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains”, Bull. Sci. Math., 136:1 (2012), 96–110 | DOI | MR | Zbl
[7] Epifanov O. V., “On Solvability of the Nonhomogeneous Cauchy–Riemann Equation in Classes of Functions that are Bounded with Weights or Systems of Weights”, Math. Notes, 51:1 (1992), 54–60 | DOI | MR | Zbl
[8] Polyakova D. A., “Solvability of Inhomogeneous Cauchy–Riemann Equation in Projective Weighted Spaces”, Siberian Math. J., 58:1 (2017), 142–152 | DOI | MR | Zbl
[9] Andreeva T. M., “Duals for Weighted Spaces of Holomorphic Functions of Prescribed Growth in Bounded Convex Domains”, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki, 2018, no. 1, 4–9 | MR
[10] Napalkov V. V., “Spaces of Analytic Functions of Prescribed Growth Near the Boundary”, Math. USSR-Izv., 30:2 (1988), 263–281 | DOI | MR | MR | Zbl | Zbl
[11] Abanin A. V., Pham Trong Tien, “Continuation of holomorphic functions and some of its applications”, Studia Math., 200:3 (2010), 279–295 | DOI | MR | Zbl
[12] Hörmander L., “On the range of convolution operators”, Ann. Math., 76:1 (1962), 148–170 | DOI | MR | Zbl
[13] Abanin A. V., “Thick Spaces and Analytic Multipliers”, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki, 1994, no. 4, 3–10 (in Russian) | MR | Zbl