@article{VMJ_2018_20_1_a8,
author = {M. Sh. Shabozov and M. S. Saidusaynov},
title = {Mean-square approximation of complex variable functions by {Fourier} series in the weighted {Bergman} space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {86--97},
year = {2018},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a8/}
}
TY - JOUR AU - M. Sh. Shabozov AU - M. S. Saidusaynov TI - Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 86 EP - 97 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a8/ LA - ru ID - VMJ_2018_20_1_a8 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. S. Saidusaynov %T Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 86-97 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a8/ %G ru %F VMJ_2018_20_1_a8
M. Sh. Shabozov; M. S. Saidusaynov. Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a8/
[1] Shabozov M. Sh., Shabozov O. Sh., “Best approximation and the value of the widths of some classes of functions in the Bergman space $B_p, 1\leq p\leq\infty$”, Dokl. Akad. Nauk, 410:4 (2006), 461–464 (in Russian) | MR | Zbl
[2] Shabozov M. Sh., Shabozov O. Sh., “On the best approximation of some classes of analytic functions in the weighted Bergman spaces”, Dokl. Akad. Nauk, 412:4 (2007), 466–469 (in Russian) | DOI | Zbl
[3] Vakarchuk S. B., Shabozov M. Sh., “The widths of classes of analytic functions in a disc”, Sbornik: Mathematics, 201:8 (2010), 3–22 (in Russian) | DOI | MR | Zbl
[4] Shabozov M. Sh., Saidusaynov M. S., “The values of $n$ widths and best linear methods of approximation for some analytic classes functions in the weighted Bergman space”, News of the Tula state university. Natural sciences, 2014, no. 3, 40–57 (in Russian)
[5] Saidusaynov M. S., “On the Values of widths and the best linear methods of approximation in the weighted Bergman space”, News of the Tula state university. Natural sciences, 2015, no. 3, 91–104 (in Russian)
[6] Saidusaynov M. S., “On the best linear method of approximation of some classes analytic functions in the weighted Bergman space”, Chebyshevskii Sb., 17:1 (2016), 240–253 (in Russian) | MR
[7] Langarshoev M. R., “On the Best Linear Methods of Approximation and the Exact Values of Widths for Some Classes of Analytic Functions in the Weighted Bergman Space”, Ukrainian Mathematical Journal, 67:10 (2016), 1537–1551 | DOI | MR | Zbl
[8] Smirnov V. I., Lebedev N. A., Constructive Theory of Functions of Complex Variables, Nauka, M., 1964, 440 pp. (in Russian) | MR
[9] Abilov V. A., Abilova F. V., Kerimov M. K., “Sharp estimates for the convergence rate of Fourier series of complex variable functions in $L_{2}(D,p(z))$”, Computational Mathematics and Mathematical Physics, 50:6 (2010), 946–950 | DOI | MR | Zbl
[10] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–N. Y.–Tokyo, 1985, 287 pp. | MR | Zbl
[11] Tikhomirov V. M., Some Questions of Approximation Theory, Izd. Moscow. Univ., M., 1976, 325 pp. | MR