Integration for positive measures with values in quasi-Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 69-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper aims to overview some new ideas and recent results in the theory of integration of scalar functions with respect to a vector measure, as well as general theorems on the functional representation of quasi-Banach lattices. We outline a purely order-based Kantorovich–Wright type integral of scalar functions with respect to a vector measure defined on a $\delta$-ring and taking values in a Dedekind $\sigma$-complete vector lattice. The parallel Bartle–Dunford–Schwartz type integration with respect to a measure defined on a $\delta$-ring with values in a quasi-Banach lattice is also presented. In the context of Banach lattices a crucial role is played by the spaces of integrable and weakly integrable functions with respect to a vector measure. Dealing with the functional representation of quasi-Banach lattices a duality based approach does not work but there are two natural candidates for a space of weakly integrable functions: maximal quasi-Banach extension and the domain of the smallest extension of the integration operator. Using this idea, one can construct new spaces of weakly integrable functions that play an essential role in the problem of the functional representation of quasi-Banach lattices. In particular, it is shown that, in studying quasi-Banach lattices, when the duality method is inapplicable, the Kantorovich–Wright integral turns out to be more flexible than t more flexible than the Bartle–Dunford–Schwartz integral.
@article{VMJ_2018_20_1_a7,
     author = {A. G. Kusraev and B. B. Tasoev},
     title = {Integration for positive measures with values in {quasi-Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {69--85},
     year = {2018},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - B. B. Tasoev
TI  - Integration for positive measures with values in quasi-Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 69
EP  - 85
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/
LA  - ru
ID  - VMJ_2018_20_1_a7
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A B. B. Tasoev
%T Integration for positive measures with values in quasi-Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 69-85
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/
%G ru
%F VMJ_2018_20_1_a7
A. G. Kusraev; B. B. Tasoev. Integration for positive measures with values in quasi-Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 69-85. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/

[1] Abramovich Ju. A., “On maximal quasi-normed extension of partially ordered normed spaces”, Vestnik of Leningrad State University, 1970, no. 1, 7–17 (in Russian)

[2] Dunford N., Schwartz J. T., Linear Operators, v. 1, General Theory, John Wiley and Sons Inc., New Jersey, 1988, 858 pp. | MR | MR

[3] Kantorovich L. V., “Linear operators in semi-ordered spaces”, Sbornik: Mathematics, 7:49 (1940), 209–284

[4] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Functional Analysis in Semi-Ordered Spaces, Gostehizdat, M., 1950, 550 pp. (in Russian) | MR

[5] Kusraev A. G., Dominated Operators, Springer-Science+Business Media, N. Y., 2000, 451 pp. | DOI | MR | MR

[6] Kusraev A. G., “The boolean transfer principle for injective Banach lattices”, Siberian Mathematical Journal, 56:5 (2015), 888–900 | DOI | DOI | MR | Zbl

[7] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Noordhoff, 1967, 388 pp. | MR | MR | Zbl

[8] Pietsch A., Operator Ideals, North-Holland Publ. Comp., Amsterdam, 1980, 451 pp. | MR | MR | Zbl

[9] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, Elsevier Sci., Amsterdam, 2001, 85–122 | DOI | MR | Zbl

[10] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | Zbl

[11] Bartle R. G., Dunford N., Schwartz J., “Weak compactness and vector measures”, Canad. J. Math., 7 (1955), 289–305 | DOI | MR | Zbl

[12] Calabuig J. M., Delgado O., Juan M. A., Sánchez Pérez E. A., “On the Banach lattice structure of $L^1_w$ of a vector measure on a $\delta$-ring”, Collect. Math., 65 (2014), 67–85 | DOI | MR | Zbl

[13] Cuartero B., Triana M. A., “$(p,q)$-Convexity in quasi-Banach lattices and applications”, Stud. Math., 84:2 (1986), 113–124 | DOI | MR | Zbl

[14] Curbera G. P., El espacio de funciones integrables respecto de una medida vectorial, Ph. D. Thesis, Univ. of Sevilla, Sevilla, 1992.

[15] Curbera G. P., “Operators into $L^1$ of a vector measure and applications to Banach lattices”, Math. Ann., 293 (1992), 317–330 | DOI | MR | Zbl

[16] Curbera G. P., Ricker W. J., “Banach lattices with the Fatou property and optimal domains of kernel operators”, Indag. Math. (N. S.)., 17 (2006), 187–204 | DOI | MR | Zbl

[17] Curbera G. P., Ricker W. J., “Vector measures, integration, applications”, Positivity, Trends Math., Birkhäuser, Basel, 2007, 127–160 | DOI | MR | Zbl

[18] Curbera G. P., Ricker W. J., “The Fatou property in $p$-convex Banach lattices”, J. Math. Anal. Appl., 328 (2007), 287–294 | DOI | MR | Zbl

[19] Delgado O., “$L^1$-spaces of vector measures defined on $\delta$-rings”, Arch. Math., 84 (2005), 432–443 | DOI | MR | Zbl

[20] Delgado O., “Optimal extensions for positive order continuous operators on Banach function spaces”, Glasgow Math. J., 56 (2014), 481–501 | DOI | MR | Zbl

[21] Delgado O., Juan M. A., “Representation of Banach lattices as $L^1_w$ spaces of a vector measure defined on a $\delta$-ring”, Bull. Belg. Math. Soc., 19:2 (2012), 239–256 | MR | Zbl

[22] Delgado O., Sánchez Pérez E. A., “Strong extensions for $q$-summing operators acting in $p$-convex Banach function spaces for $1\leq p\leq q$”, Positivity, 20 (2016), 999–1014 | DOI | MR | Zbl

[23] Delgado O., Sánchez Pérez E. A., “Optimal extensions for pth power factorable operators”, Mediterranean J. of Math., 13 (2016), 4281–4303 | DOI | MR | Zbl

[24] Fremlin D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974, xiv+266 pp. | MR | Zbl

[25] Fremlin D. H., Measure Theory, v. 2, Broad Foundation, Cambridge Univ. Press, Cambridge, 2001, 672 pp.

[26] Haydon R., “Injective Banach lattices”, Math. Z., 156 (1974), 19–47 | DOI | MR

[27] Juan A. M., Sánchez Pérez E. A., “Maurey–Rosenthal domination for abstract Banach lattices”, J. Ineq. and Appl., 213:213 (2013), 1–12 | MR

[28] Godefroy G., “A glimpse at Nigel Kalton's work”, Banach Spaces and their applications in Analysis, W. de Gruyter, Berlin, 2007, 1–35 | MR | Zbl

[29] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgow Math. J., 25 (1984), 141–152 | DOI | MR | Zbl

[30] Kalton N. J., “Isomorphisms between spaces of vector-valued continuous functions”, Proc. Edinburgh Math. Soc., 26 (1983), 29–48 | DOI | MR | Zbl

[31] Kalton N. J., “Quasi-Banach Spaces”, Handbook of the Geometry of Banach Spaces, v. 2, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam, 2003, 1099–1130 | DOI | MR

[32] Kluvanek I., Knowles G., Vector Measures and Control Systems, North-Holland, Amsterdam, 1976, 191 pp. | MR | Zbl

[33] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of vector lattices”, J. Math. Anal. Appl., 455 (2017), 554–568 | DOI | MR | Zbl

[34] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi-Banach lattices”, J. Math. Anal. Appl., 462:1 (2018) (to appear) | DOI | MR

[35] Kusraev A. G., Tasoev B. B., “Maximal quasi-normed extension of quasi-normed lattices”, Vladikavkaz Math. J., 19:3 (2017), 41–50 | DOI | MR

[36] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl

[37] Lewis D. R., “Integration with respect to vector measures”, Pacific J. Math., 33 (1970), 157–165 | DOI | MR | Zbl

[38] Lewis D. R., “On integration and summability in vector spaces”, Illinois J. Math., 16 (1972), 294–307 | MR | Zbl

[39] Maligranda L., “Type, cotype and convexity properties of quasi-Banach spaces”, Proc. of the International Symposium on Banach and Function Spaces (Oct. 2–4, 2003, Kitakyushu–Japan), Yokohama Publ., Yokohama, 2004, 83–120 | MR | Zbl

[40] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. I. Scalar-valued measures on $\delta$-rings”, Adv. Math., 73 (1989), 204–241 | DOI | MR | Zbl

[41] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. II. Pettis integration”, Adv. Math., 75 (1989), 121–167 | DOI | MR | Zbl

[42] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, xvi+395 pp. | MR | Zbl

[43] Okada S., Ricker W. J., Sánchez Pérez E. A., Optimal domain and integral extension of operators acting in function spaces, Oper. Theory Adv. Appl., 180, Birkhäuser, Basel, 2008 | MR | Zbl

[44] Rolewicz S., Metric Linear Spaces, Math. Monogr., 56, PWN-Polish Sci. Publ., Warszaw, 1972, 287 pp. | MR | Zbl

[45] Sánchez Pérez E. A., Tradacete P., “Bartle–Dunford–Schwartz integration for positive vector measures and representation of quasi-Banach lattices”, J. Nonlin. and Conv. Anal., 17:2 (2016), 387–402 | MR | Zbl

[46] Thomas E. G. F., “Vector Integration”, Quast. Math., 35 (2012), 391–416 | DOI | MR | Zbl

[47] Turpin Ph., “Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe”, Intégration vectorielle et multivoque, Colloq. (Univ. Caen, Caen, 1975), Dép. Math. U. E. R. Sci., 8, Univ. Caen, Caen, 1975 | MR

[48] Turpin Ph., Convexités dans les Espaces Vectoriels Topologiques Généraux, Diss. Math., 131, 1976 | MR

[49] Wright J. D. M., “Stone-algebra-valued measures and integrals”, Proc. London Math. Soc., 19:3 (1969), 107–122 | DOI | MR | Zbl

[50] Wright J. D. M., “A Radon–Nikodým theorem for Stone algebra valued measures”, Trans. Amer. Math. Soc., 139 (1969), 75–94 | MR | Zbl

[51] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37:2 (1994), 207–226 | DOI | MR | Zbl