@article{VMJ_2018_20_1_a7,
author = {A. G. Kusraev and B. B. Tasoev},
title = {Integration for positive measures with values in {quasi-Banach} lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {69--85},
year = {2018},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/}
}
A. G. Kusraev; B. B. Tasoev. Integration for positive measures with values in quasi-Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 69-85. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a7/
[1] Abramovich Ju. A., “On maximal quasi-normed extension of partially ordered normed spaces”, Vestnik of Leningrad State University, 1970, no. 1, 7–17 (in Russian)
[2] Dunford N., Schwartz J. T., Linear Operators, v. 1, General Theory, John Wiley and Sons Inc., New Jersey, 1988, 858 pp. | MR | MR
[3] Kantorovich L. V., “Linear operators in semi-ordered spaces”, Sbornik: Mathematics, 7:49 (1940), 209–284
[4] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Functional Analysis in Semi-Ordered Spaces, Gostehizdat, M., 1950, 550 pp. (in Russian) | MR
[5] Kusraev A. G., Dominated Operators, Springer-Science+Business Media, N. Y., 2000, 451 pp. | DOI | MR | MR
[6] Kusraev A. G., “The boolean transfer principle for injective Banach lattices”, Siberian Mathematical Journal, 56:5 (2015), 888–900 | DOI | DOI | MR | Zbl
[7] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Noordhoff, 1967, 388 pp. | MR | MR | Zbl
[8] Pietsch A., Operator Ideals, North-Holland Publ. Comp., Amsterdam, 1980, 451 pp. | MR | MR | Zbl
[9] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, Elsevier Sci., Amsterdam, 2001, 85–122 | DOI | MR | Zbl
[10] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | Zbl
[11] Bartle R. G., Dunford N., Schwartz J., “Weak compactness and vector measures”, Canad. J. Math., 7 (1955), 289–305 | DOI | MR | Zbl
[12] Calabuig J. M., Delgado O., Juan M. A., Sánchez Pérez E. A., “On the Banach lattice structure of $L^1_w$ of a vector measure on a $\delta$-ring”, Collect. Math., 65 (2014), 67–85 | DOI | MR | Zbl
[13] Cuartero B., Triana M. A., “$(p,q)$-Convexity in quasi-Banach lattices and applications”, Stud. Math., 84:2 (1986), 113–124 | DOI | MR | Zbl
[14] Curbera G. P., El espacio de funciones integrables respecto de una medida vectorial, Ph. D. Thesis, Univ. of Sevilla, Sevilla, 1992.
[15] Curbera G. P., “Operators into $L^1$ of a vector measure and applications to Banach lattices”, Math. Ann., 293 (1992), 317–330 | DOI | MR | Zbl
[16] Curbera G. P., Ricker W. J., “Banach lattices with the Fatou property and optimal domains of kernel operators”, Indag. Math. (N. S.)., 17 (2006), 187–204 | DOI | MR | Zbl
[17] Curbera G. P., Ricker W. J., “Vector measures, integration, applications”, Positivity, Trends Math., Birkhäuser, Basel, 2007, 127–160 | DOI | MR | Zbl
[18] Curbera G. P., Ricker W. J., “The Fatou property in $p$-convex Banach lattices”, J. Math. Anal. Appl., 328 (2007), 287–294 | DOI | MR | Zbl
[19] Delgado O., “$L^1$-spaces of vector measures defined on $\delta$-rings”, Arch. Math., 84 (2005), 432–443 | DOI | MR | Zbl
[20] Delgado O., “Optimal extensions for positive order continuous operators on Banach function spaces”, Glasgow Math. J., 56 (2014), 481–501 | DOI | MR | Zbl
[21] Delgado O., Juan M. A., “Representation of Banach lattices as $L^1_w$ spaces of a vector measure defined on a $\delta$-ring”, Bull. Belg. Math. Soc., 19:2 (2012), 239–256 | MR | Zbl
[22] Delgado O., Sánchez Pérez E. A., “Strong extensions for $q$-summing operators acting in $p$-convex Banach function spaces for $1\leq p\leq q$”, Positivity, 20 (2016), 999–1014 | DOI | MR | Zbl
[23] Delgado O., Sánchez Pérez E. A., “Optimal extensions for pth power factorable operators”, Mediterranean J. of Math., 13 (2016), 4281–4303 | DOI | MR | Zbl
[24] Fremlin D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974, xiv+266 pp. | MR | Zbl
[25] Fremlin D. H., Measure Theory, v. 2, Broad Foundation, Cambridge Univ. Press, Cambridge, 2001, 672 pp.
[26] Haydon R., “Injective Banach lattices”, Math. Z., 156 (1974), 19–47 | DOI | MR
[27] Juan A. M., Sánchez Pérez E. A., “Maurey–Rosenthal domination for abstract Banach lattices”, J. Ineq. and Appl., 213:213 (2013), 1–12 | MR
[28] Godefroy G., “A glimpse at Nigel Kalton's work”, Banach Spaces and their applications in Analysis, W. de Gruyter, Berlin, 2007, 1–35 | MR | Zbl
[29] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgow Math. J., 25 (1984), 141–152 | DOI | MR | Zbl
[30] Kalton N. J., “Isomorphisms between spaces of vector-valued continuous functions”, Proc. Edinburgh Math. Soc., 26 (1983), 29–48 | DOI | MR | Zbl
[31] Kalton N. J., “Quasi-Banach Spaces”, Handbook of the Geometry of Banach Spaces, v. 2, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam, 2003, 1099–1130 | DOI | MR
[32] Kluvanek I., Knowles G., Vector Measures and Control Systems, North-Holland, Amsterdam, 1976, 191 pp. | MR | Zbl
[33] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of vector lattices”, J. Math. Anal. Appl., 455 (2017), 554–568 | DOI | MR | Zbl
[34] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi-Banach lattices”, J. Math. Anal. Appl., 462:1 (2018) (to appear) | DOI | MR
[35] Kusraev A. G., Tasoev B. B., “Maximal quasi-normed extension of quasi-normed lattices”, Vladikavkaz Math. J., 19:3 (2017), 41–50 | DOI | MR
[36] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl
[37] Lewis D. R., “Integration with respect to vector measures”, Pacific J. Math., 33 (1970), 157–165 | DOI | MR | Zbl
[38] Lewis D. R., “On integration and summability in vector spaces”, Illinois J. Math., 16 (1972), 294–307 | MR | Zbl
[39] Maligranda L., “Type, cotype and convexity properties of quasi-Banach spaces”, Proc. of the International Symposium on Banach and Function Spaces (Oct. 2–4, 2003, Kitakyushu–Japan), Yokohama Publ., Yokohama, 2004, 83–120 | MR | Zbl
[40] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. I. Scalar-valued measures on $\delta$-rings”, Adv. Math., 73 (1989), 204–241 | DOI | MR | Zbl
[41] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. II. Pettis integration”, Adv. Math., 75 (1989), 121–167 | DOI | MR | Zbl
[42] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, xvi+395 pp. | MR | Zbl
[43] Okada S., Ricker W. J., Sánchez Pérez E. A., Optimal domain and integral extension of operators acting in function spaces, Oper. Theory Adv. Appl., 180, Birkhäuser, Basel, 2008 | MR | Zbl
[44] Rolewicz S., Metric Linear Spaces, Math. Monogr., 56, PWN-Polish Sci. Publ., Warszaw, 1972, 287 pp. | MR | Zbl
[45] Sánchez Pérez E. A., Tradacete P., “Bartle–Dunford–Schwartz integration for positive vector measures and representation of quasi-Banach lattices”, J. Nonlin. and Conv. Anal., 17:2 (2016), 387–402 | MR | Zbl
[46] Thomas E. G. F., “Vector Integration”, Quast. Math., 35 (2012), 391–416 | DOI | MR | Zbl
[47] Turpin Ph., “Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe”, Intégration vectorielle et multivoque, Colloq. (Univ. Caen, Caen, 1975), Dép. Math. U. E. R. Sci., 8, Univ. Caen, Caen, 1975 | MR
[48] Turpin Ph., Convexités dans les Espaces Vectoriels Topologiques Généraux, Diss. Math., 131, 1976 | MR
[49] Wright J. D. M., “Stone-algebra-valued measures and integrals”, Proc. London Math. Soc., 19:3 (1969), 107–122 | DOI | MR | Zbl
[50] Wright J. D. M., “A Radon–Nikodým theorem for Stone algebra valued measures”, Trans. Amer. Math. Soc., 139 (1969), 75–94 | MR | Zbl
[51] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37:2 (1994), 207–226 | DOI | MR | Zbl