Geometric characterization of real JBW-factors
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 61-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the interesting problems in the theory of operator algebras is the geometric characterization of the state spaces of Jordan operator algebras. In the mid-1980s, Y. Friedman and B. Russo introduced the co-called facially symmetric spaces. The main purpose of introducing them is the geometric characterization of predual spaces of JB*-triples that admit an algebraic structure. Many of the properties required in these characterizations are natural assumptions for the state spaces of physical systems. Such spaces are considered as a geometric model for states of quantum mechanics. Y. Fridman and B. Russo showed that the predual space of a complex von Neumann algebra and more general JBW*-triple is a neutral strongly facially symmetric space. In this connection, Y. Friedman and B. Russo mainly studied neutral facially symmetric spaces, and in these spaces they obtained results that were previously known for the aforementioned predual spaces. In 2004, M. Neal and B. Russo gave geometric characterizations of the predual spaces of complex JBW*-triples in the class of facially symmetric spaces. At the same time, the description of real JBW*-triples remains an open question. The present paper is devoted to the study of predual spaces of real JBW-factors. It is proved that the predual space of a real JBW-factor is a strongly facially symmetric space if and only if it either is abelian or is a spin-factor.
@article{VMJ_2018_20_1_a6,
     author = {M. M. Ibragimov and K. K. Kudajbergenov and Zh. H. Sejpullaev},
     title = {Geometric characterization of real {JBW-factors}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {61--68},
     year = {2018},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a6/}
}
TY  - JOUR
AU  - M. M. Ibragimov
AU  - K. K. Kudajbergenov
AU  - Zh. H. Sejpullaev
TI  - Geometric characterization of real JBW-factors
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 61
EP  - 68
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a6/
LA  - ru
ID  - VMJ_2018_20_1_a6
ER  - 
%0 Journal Article
%A M. M. Ibragimov
%A K. K. Kudajbergenov
%A Zh. H. Sejpullaev
%T Geometric characterization of real JBW-factors
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 61-68
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a6/
%G ru
%F VMJ_2018_20_1_a6
M. M. Ibragimov; K. K. Kudajbergenov; Zh. H. Sejpullaev. Geometric characterization of real JBW-factors. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a6/

[1] Friedman Y., Russo B., “A geometric spectral theorem”, Quart. J. Math. Oxford, 37:2 (1986), 263–277 | DOI | MR | Zbl

[2] Friedman Y., Russo B., “Affine structure of facially symmetric spaces”, Math. Proc. Camb. Philos. Soc., 106:1 (1989), 107–124 | DOI | MR | Zbl

[3] Friedman Y., Russo B., “Some affine geometric aspects of operator algebras”, Pacif. J. Math., 137:1 (1989), 123–144 | DOI | MR | Zbl

[4] Friedman Y., Russo B., “Geometry of the dual ball of the spin factor”, Proc. Lon. Math. Soc. III Ser., 65:1 (1992), 142–174 | DOI | MR | Zbl

[5] Friedman Y., Russo B., “Classification of atomic facially symmetric spaces”, Canad. J. Math., 45:1 (1993), 33–87 | DOI | MR | Zbl

[6] Neal M., Russo B., “State space of JB*-triples”, Math. Ann., 328:4 (2004), 585–624 | DOI | MR | Zbl

[7] Ibragimov M. M., Kudayberegenov K. K., Seypullaev J. X., “Facially symmetric spaces and preduals of a hermitian part of von Neumann algebras”, Russian Math., 2018, no. 5, 33–40 (in Russian)

[8] Ayupov Sh. A., Classification and Representation of Ordered Jordan Algebras, Fan, Tashkent, 1986, 121 pp. (in Russian) | MR

[9] Korobova K. B., Xudalov V. T., “On ordered structure of abstract spin-factor”, Vladikavkaz Math. J., 6:1 (2004), 46–57 (in Russian) | MR | Zbl

[10] Yadgorov N. J., “Weakly and strongly facially symmetric spaces”, Dokl. AN RUz, 5 (1996), 6–8 (in Russian) | Zbl