Derivations with values in an ideal $F$-spaces of measurable functions
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 21-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that any derivation on a commutative von Neumann algebra $ \mathcal {L}_{\infty} (\Omega, \mu)$ is identically equal to zero. At the same time, the commutative algebra $\mathcal {L}_{0}(\Omega, \mu)$ of complex measurable functions defined on a non-atomic measure space $(\Omega,\mu)$ admits non-zero derivations. Besides, every derivation on $\mathcal{L}_{\infty}(\Omega, \mu)$ with the values in an ideal normed subspace $X \subset \mathcal{L}_{0}(\Omega,\mu)$ is equal to zero. The same remains true for an ideal quasi-normed subspace $X \subset\mathcal{L}_{0}(\Omega, \mu)$. 
Naturally, there is the problem of describing the class of ideal $F$-normed spaces $X \subset \mathcal{L}_{0}(\Omega, \mu)$ for which there is a non-zero derivation on $\mathcal{L}_{\infty}(\Omega, \mu)$ with the values in $X $. We give necessary and sufficient conditions for a complete ideal $F$-normed spaces $X$ to be such that there is a non-zero derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu) \to X$. In particular, it is shown that if the $F$-norm on $X$ is order semicontinuous, each derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu) \to X$ is equal to zero. At the same time, existence of a non-atomic idempotent $0\neq e \in X$, $\mu(e)  \infty$ for which the measure topology in $e \cdot X$ coincides with the topology generated by the $F$-norm implies the existence of a non-zero derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu)\to X$. Examples of such ideal $F$-normed spaces are algebras $\mathcal{L}_{0}(\Omega, \mu)$ with non-atomic measure spaces $(\Omega, \mu)$ equipped with the $F$-norm $\| f\|_{\Omega} = \int_{\Omega} \frac {| f |} {1+ | f |} d\mu $. For such ideal $ F$-spaces there is at least a continuum of pairwise distinct non-zero derivations $\delta: \mathcal{L}_{\infty}(\Omega, \mu)\to (\mathcal{L}_{0}(\Omega, \mu), \|\cdot\|_{\Omega})$.
			
            
            
            
          
        
      @article{VMJ_2018_20_1_a2,
     author = {A. A. Alimov and V. I. Chilin},
     title = {Derivations with values in an ideal $F$-spaces of measurable functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Alimov AU - V. I. Chilin TI - Derivations with values in an ideal $F$-spaces of measurable functions JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 21 EP - 29 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a2/ LA - ru ID - VMJ_2018_20_1_a2 ER -
A. A. Alimov; V. I. Chilin. Derivations with values in an ideal $F$-spaces of measurable functions. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a2/
