@article{VMJ_2018_20_1_a2,
author = {A. A. Alimov and V. I. Chilin},
title = {Derivations with values in an ideal $F$-spaces of measurable functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--29},
year = {2018},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a2/}
}
A. A. Alimov; V. I. Chilin. Derivations with values in an ideal $F$-spaces of measurable functions. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a2/
[1] Ber A. F., Chilin V. I., Sukochev F. A., “Non-trivial derivations on commutative regular algebras”, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl
[2] Ber A. F., “Derivations on commutative regular algebras”, Sib. Adv. Math., 21:3 (2011), 161–169 | DOI | MR
[3] Ber A. F., Chilin V. I., Levitina G. B., “Derivations with values in quasi-normed bimodules of locally measurable operators”, Sib. Adv. Math., 25:3 (2015), 169–178 | DOI | MR
[4] Bennet C., Sharpley R., Interpolation of Operators, Acad. Press Inc., N. Y., 1988 | MR | Zbl
[5] Chilin V. I., Levitina G. B., “Derivations on ideals in commutative $AW^*$-algebras”, Sib. Adv. Math., 24:1 (2014), 26–42 | DOI | MR | MR | Zbl
[6] Dykema K., Sukochev F., Zanin D., Algebras of log-integrable functions and operators, 10 Sep. 2015, 11 pp., arXiv: 1509.03360v1 [math.OA] | MR
[7] Kalton N. J., Peck N. T., Roberts James W., An $F$-space sampler, London Math. Soc. Lect. Note Ser., 89, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[8] Kusraev A. G., Dominated Operators, Math. and its Appl., 519, Kluwer Academic Publishers, Dordrecht, 2000 | MR | MR | Zbl
[9] Kusraev A. G., “Automorphisms and derivations on a universally complete complex $f$-algebra”, Siberian Mathematical Journal, 47:1 (2006), 77–85 | DOI | MR | Zbl
[10] Rudin W., Functional Analysis, McGraw-Hill Book Company, New York, 1973 | MR | MR | Zbl
[11] Sakai S., $C^*$-Algebras and $W^*$-Algebras, Springer-Verlag, N. Y., 1971 | MR | Zbl
[12] Vladimirov D. A., Boolean Algebras in Analysis, Math. Appl., 540, Springer, Dordrecht, 2002, 604 pp. | MR
[13] Vulikh B. Z., Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ. Ltd., Groningen, 1967, 387 pp. | MR | Zbl