Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 10-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space $L_p(\mathbb{R}^n)$, where $1\leqslant p\leqslant \infty$, we consider an operator $B$, which is the sum of two terms. The first term is a paired multidimensional integral operator, whose kernels are homogeneous of degree $(-n)$ and invariant with respect to the rotation group of $\mathbb{R}^n$-space, and the second term is a series, convergent in the operator norm, composed of multidimensional multiplicative shift operators with complex coefficients. We impose some additional conditions on the kernels and coefficients of the operator $B$, and these conditions ensure the boundedness of this operator in the space of summable functions. The main aim of the paper is to study the invertibility of the operator $B$. To solve this problem we use a special method that allows the reduction of the multidimensional paired operator to an infinite sequence of one-dimensional paired operators $B_m$, where $m\in\mathbb{Z}_+$. It is shown that the operator $B$ is invertible if and only if all the operators $B_m$ are invertible, where $m$ runs through all values from zero to some finite number $m_0$. In turn, the operators $B_m$ reduce to integral-difference convolution operators whose theory is well known. All this allowed us to determine the symbol of the operator $B$. This symbol represents the pair of functions $(\beta_1(m,\xi),\beta_2(m,\xi))$, defined on the set $\mathbb{Z}_+\times\mathbb{R}$. If the symbol is non-degenerate, then we define in a natural way a real number $\nu$ and integers $\varkappa_m$, where $m\in\mathbb{Z}_+$. Numbers $\nu$ and $\varkappa_m$ are called indices. The main result of the work is the invertibility criterion of the multidimensional paired operator $B$ in the space $L_p(\mathbb{R}^n)$. According to this criterion, the operator $B$ is invertible if and only if its symbol is non-degenerate, and all its indices are zero.
@article{VMJ_2018_20_1_a1,
     author = {O. G. Avsyankin and A. M. Koval'chuk},
     title = {Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {10--20},
     year = {2018},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/}
}
TY  - JOUR
AU  - O. G. Avsyankin
AU  - A. M. Koval'chuk
TI  - Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 10
EP  - 20
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/
LA  - ru
ID  - VMJ_2018_20_1_a1
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%A A. M. Koval'chuk
%T Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 10-20
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/
%G ru
%F VMJ_2018_20_1_a1
O. G. Avsyankin; A. M. Koval'chuk. Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 10-20. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/

[1] Karapetiants N., Samko S., Equations with Involutive Operatore, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR

[2] Avsyankin O. G., Karapetyants N. K., “On the pseudospectra of multidimensional integral operators $(-n)$”, Siberian Math. J., 44:6 (2003), 935–950 | DOI | MR | Zbl

[3] Avsyankin O. G., Peretyat'kin F. G., “Boundedness and compactness of multidimensional integral operators with homogeneous kernels”, Russian Mathematics, 57:11 (2013), 57–60 | DOI | MR | Zbl

[4] Avsyankin O. G., “Multidimensional integral operators with homogeneous kernels and with coefficients oscillating at infinity”, Differential Equations, 51:9 (2015), 1165–1172 | DOI | DOI | MR | Zbl

[5] Avsyankin O. G., “On the $C^*$-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations”, Doklady Mathematics, 77:2 (2008), 298–299 | DOI | MR | Zbl

[6] Avsyankin O. G., “On multidimensional integral operators with homogeneous kernels, perturbated by one-sided multiplicative shift operators”, Vladikavkaz Math. J., 15:1 (2013), 5–13 (in Russian) | DOI

[7] Avsyankin O. G., “Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts”, Russian Mathematics, 59:2 (2015), 7–13 | DOI | MR | Zbl

[8] Gohberg I. C., Feldman I. A., Convolution Equations and Projection Methods of Their Solution, Nauka, M., 1971, 352 pp.

[9] Samko S. G., Hypersingular Integrals and Their Applications, RSU, Rostov-on-Don, 1984, 208 pp.