@article{VMJ_2018_20_1_a1,
author = {O. G. Avsyankin and A. M. Koval'chuk},
title = {Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {10--20},
year = {2018},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/}
}
TY - JOUR AU - O. G. Avsyankin AU - A. M. Koval'chuk TI - Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 10 EP - 20 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/ LA - ru ID - VMJ_2018_20_1_a1 ER -
%0 Journal Article %A O. G. Avsyankin %A A. M. Koval'chuk %T Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift %J Vladikavkazskij matematičeskij žurnal %D 2018 %P 10-20 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/ %G ru %F VMJ_2018_20_1_a1
O. G. Avsyankin; A. M. Koval'chuk. Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 10-20. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a1/
[1] Karapetiants N., Samko S., Equations with Involutive Operatore, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR
[2] Avsyankin O. G., Karapetyants N. K., “On the pseudospectra of multidimensional integral operators $(-n)$”, Siberian Math. J., 44:6 (2003), 935–950 | DOI | MR | Zbl
[3] Avsyankin O. G., Peretyat'kin F. G., “Boundedness and compactness of multidimensional integral operators with homogeneous kernels”, Russian Mathematics, 57:11 (2013), 57–60 | DOI | MR | Zbl
[4] Avsyankin O. G., “Multidimensional integral operators with homogeneous kernels and with coefficients oscillating at infinity”, Differential Equations, 51:9 (2015), 1165–1172 | DOI | DOI | MR | Zbl
[5] Avsyankin O. G., “On the $C^*$-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations”, Doklady Mathematics, 77:2 (2008), 298–299 | DOI | MR | Zbl
[6] Avsyankin O. G., “On multidimensional integral operators with homogeneous kernels, perturbated by one-sided multiplicative shift operators”, Vladikavkaz Math. J., 15:1 (2013), 5–13 (in Russian) | DOI
[7] Avsyankin O. G., “Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts”, Russian Mathematics, 59:2 (2015), 7–13 | DOI | MR | Zbl
[8] Gohberg I. C., Feldman I. A., Convolution Equations and Projection Methods of Their Solution, Nauka, M., 1971, 352 pp.
[9] Samko S. G., Hypersingular Integrals and Their Applications, RSU, Rostov-on-Don, 1984, 208 pp.