On the sum of narrow and $C$-compact operators
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider narrow linear operators defined on a Banach–Kantorovich space and taking value in a Banach space. We prove that the sum $S+T$ of two operators is narrow whenever $S$ is a narrow operator and $T$ is a $(bo)$-continuous $C$-compact operator. For the proof of the main result we use the method of decomposition of an element of a lattice-normed space into a sum of disjoint fragments and an approximation of a $C$-compact operator by finite-rank operators.
@article{VMJ_2018_20_1_a0,
     author = {N. M. Abasov and M. A. Pliev},
     title = {On the sum of narrow and $C$-compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--9},
     year = {2018},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/}
}
TY  - JOUR
AU  - N. M. Abasov
AU  - M. A. Pliev
TI  - On the sum of narrow and $C$-compact operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 3
EP  - 9
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/
LA  - ru
ID  - VMJ_2018_20_1_a0
ER  - 
%0 Journal Article
%A N. M. Abasov
%A M. A. Pliev
%T On the sum of narrow and $C$-compact operators
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 3-9
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/
%G ru
%F VMJ_2018_20_1_a0
N. M. Abasov; M. A. Pliev. On the sum of narrow and $C$-compact operators. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/

[1] Popov M. M., Plichko A. M., Symmetric function spaces on atomless probability spaces, Diss. Math. (Rozprawy Mat.), 306, 1990, 1–85 | MR

[2] Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, De Gruyter Stud. in Math., 45, De Gruyter, 2013 | MR | Zbl

[3] Maslyuchenko O., Mykhaylyuk V., Popov M., “A lattice approach to narrow operators”, Positivity, 13 (2009), 459–495 | DOI | MR | Zbl

[4] Pliev M., “Narrow operators on lattice-normed spaces”, Open Math., 9:6 (2011), 1276–1287 | DOI | MR | Zbl

[5] Abasov N., Megahed A. M., Pliev M., “Dominated operators from lattice-normed spaces to sequence Banach lattices”, Annals of Funct. Anal., 7:4 (2016), 646–655 | DOI | MR | Zbl

[6] Pliev M., Popov M., “Narrow orthogonally additive operators”, Positivity, 18:4 (2014), 641–667 | DOI | MR | Zbl

[7] Mykhaylyuk V., Pliev M., Popov M., Sobchuk O., “Dividing measures and narrow operators”, Stud. Math., 231 (2015), 97–116 | DOI | MR | Zbl

[8] Pliev M., “Domination problem for narrow orthogonally additive operators”, Positivity, 21:1 (2017), 23–33 | DOI | MR | Zbl

[9] Pliev M. A., Fang X., “Narrow orthogonally additive operators in lattice-normed spaces”, Siberian Math. J., 58:1 (2017), 134–141 | DOI | DOI | MR | Zbl

[10] Mykhaylyuk V., Popov M., “On sums of narrow operators on Köthe function space”, J. Math. Anal. Appl., 404 (2013), 554–561 | DOI | MR | Zbl

[11] Humenchuk H. I., “On the sum of narrow and finite-rank orthogonally additive operator”, Ukrainian Math. J., 67:12 (2016), 1831–1837 | DOI | MR | Zbl

[12] Kusraev A. G., Dominated Operators, Kluwer Acad. Publ., Dordrecht–Boston–London, 2000, 446 pp. | MR | MR | Zbl