On the sum of narrow and $C$-compact operators
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider narrow linear operators defined on a Banach–Kantorovich space and taking value in a Banach space. We prove that the sum $S+T$ of two operators is narrow whenever $S$ is a narrow operator and $T$ is a $(bo)$-continuous $C$-compact operator. For the proof of the main result we use the method of decomposition of an element of a lattice-normed space into a sum of disjoint fragments and an approximation of a $C$-compact operator by finite-rank operators.
@article{VMJ_2018_20_1_a0,
     author = {N. M. Abasov and M. A. Pliev},
     title = {On the sum of narrow and $C$-compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/}
}
TY  - JOUR
AU  - N. M. Abasov
AU  - M. A. Pliev
TI  - On the sum of narrow and $C$-compact operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 3
EP  - 9
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/
LA  - ru
ID  - VMJ_2018_20_1_a0
ER  - 
%0 Journal Article
%A N. M. Abasov
%A M. A. Pliev
%T On the sum of narrow and $C$-compact operators
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 3-9
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/
%G ru
%F VMJ_2018_20_1_a0
N. M. Abasov; M. A. Pliev. On the sum of narrow and $C$-compact operators. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/