On the sum of narrow and $C$-compact operators
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider narrow linear operators defined on a Banach–Kantorovich space and taking value in a Banach space. We prove that the sum $S+T$ of two operators is narrow whenever $S$ is a narrow operator and $T$ is a $(bo)$-continuous $C$-compact operator. For the proof of the main result we use the method of decomposition of an element of a lattice-normed space into a sum of disjoint fragments and an approximation of a $C$-compact operator by finite-rank operators.
			
            
            
            
          
        
      @article{VMJ_2018_20_1_a0,
     author = {N. M. Abasov and M. A. Pliev},
     title = {On the sum of narrow and $C$-compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/}
}
                      
                      
                    N. M. Abasov; M. A. Pliev. On the sum of narrow and $C$-compact operators. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a0/
