An implicit function theorem in non-smooth case
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 86-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider an equation of the form $F(x,y)=0$, $x\in X$, $y\in M$, where $M$ is a set. By the method of tents (tangent cones), when the set $M$ is given by a nonsmooth restriction of equality type, the existence of a differentiable function $y(\cdot)$ such that $F(x, y(x))=0$, $y(x)\in M$, $y(x_0)=y_0$ is proved. In particular, the existence of smooth local selections for multivalued mappings of the form $a(x) = \{y \in \mathbb{R}^m:\, f_i(x, y) = 0,\, i \in I,\, g(y) = 0\}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, is studied by the method of tents. It is assumed that the functions $f_i(x, y)$, $i \in I$, are strictly differentiable, and the function $g (y)$ is locally Lipschitzian. Under certain additional conditions it is proved that through any point of the graph of a set-valued mapping there passes a differentiable selection of this mapping. These assertion can be interpreted as an implicit function theorem in the nonsmooth analysis. Strongly differentiable tents for the sets defined by nonsmooth constraints of the equality type are also constructed in the article. A sufficient condition is provided for the intersection of strictly differentiable tents to be a strictly differentiable tent. It is also shown that the Clark tangent cones are Boltiansky tents for sets defined by locally Lipschitz functions.
@article{VMJ_2017_19_4_a8,
     author = {R. A. Khachatryan},
     title = {An implicit function theorem in non-smooth case},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {86--96},
     year = {2017},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a8/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - An implicit function theorem in non-smooth case
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 86
EP  - 96
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a8/
LA  - ru
ID  - VMJ_2017_19_4_a8
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T An implicit function theorem in non-smooth case
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 86-96
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a8/
%G ru
%F VMJ_2017_19_4_a8
R. A. Khachatryan. An implicit function theorem in non-smooth case. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 86-96. http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a8/

[1] Avakov E. R., Magaril-Il'yaev G. G., “An imlicit-function theorem for inclusion”, Mathematical Notes, 91:5–6 (2012), 764–769 | DOI | DOI | MR | Zbl

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Nauka, M., 1979, 408 pp. (in Russian)

[3] Arutyunov A. V., “Implicit functiont theorem without a priori assumptions about normality”, Computational Mathematics and Mathematical Physics, 46:2 (2006), 195–205 | DOI | MR | Zbl

[4] Gel'man B. D., “A Generalized Implicit Function Theorem”, Functional Analysis and its Applications, 35:3 (2001), 183–188 | DOI | DOI | MR | Zbl

[5] Aubin J. P., Ekland I., Applied Nonlinear Analysis, Courier Corporation, 2006, 518 pp. | MR

[6] Boltyanskii V. G., Optimal Control of Discrete Systems, Nauka, M., 1973, 446 pp. (in Russian)

[7] Boltyanskii V. G., “The method of tents in the theory of extremal problems”, Russian Mathematical Surveys, 30:3 (1975), 1–54 | DOI | MR

[8] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Graylok Press, 1965, 257 pp. | MR

[9] Clarke F. H., Optimization and Nonsmooth Analysis, Awiley-Intercience Publication John Wiley Sons, New York, 1983, 296 pp. | MR

[10] Polovinkin E. S., Multivalued Analysis and Differential Inclusions, Fizmatlit, M., 2014, 606 pp. (in Russian)

[11] Pshenichnii B. N., Convex Analysis and Extremal Problems, Nauka, M., 1980, 320 pp. (in Russian)

[12] Magaril-Il'yaev G. G., “The implicit function theorem for Lipschitz maps”, Russian Mathematical Surveys, 33:1 (1978), 209–210 | DOI | MR | Zbl

[13] Clarke F. H., “On the inverse function theorem”, Pacific J. of Math., 64:1 (1976), 97–102 | DOI | MR | Zbl

[14] Michael E., “Continuous selections 1”, Ann. Math., 63 (1956), 361–381 | DOI | MR

[15] Khachatryan R. A., “On set-valued mappings with starlike graphs”, Journal of Contemporary Mathematical Analysis, 47:1 (2012), 28–44 | DOI | MR | Zbl

[16] Khachatryan R. A., Arutyan F. G., “Intersection of tents in infinite dimensional spaces”, Journal of Contemporary Mathematical Analysis, 36:2 (2001), 27–34 | MR

[17] Khachatryan R. A., “On the existence of continous and smooth selections for multivalued mappings”, Journal of Contemporary Mathematical Analysis, 37:2 (2002), 30–40 | MR | Zbl