On approximation of almost periodic functions by some sums
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 76-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study some questions of approximating almost periodic functions of two variables by partial Fourier sums and Marcinkiewicz type sums in the uniform metric, provided that the Fourier exponents of the functions under consideration have a limit point at infinity. More precisely, we consider a uniform almost periodic function of two variables whose Fourier exponents have a unique limit point at infinity. It is proved that the partial sum of this series with the weight function $\Phi_\sigma(t,z)$ $(\sigma>0)$ admits an integral representation. As a weight function, we take an arbitrary real continuous even function $\Phi_\sigma(t,z)$ that takes the value $1$ for $t=0$ and $z=0$ and vanishes when either $|t|\geq\sigma$ or $|z|\geq\sigma$. First, we prove almost periodicity of the function $f(x,y)$ and using the Fourier inversion formula we define the Fourier coefficients of this function. Then, we examine the deviation of the given function $f(x,y)$ from partial sums of its Fourier series, depending on the speed of tending to zero of value of the best approximation by trigonometric polynomial of limited degree. Similarly, we obtain the upper bound of the deviation value of uniform almost-periodic functions from sums of Marcinkiewicz type.
@article{VMJ_2017_19_4_a7,
     author = {Yu. Kh. Khasanov},
     title = {On approximation of almost periodic functions by some sums},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {76--85},
     year = {2017},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a7/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
TI  - On approximation of almost periodic functions by some sums
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 76
EP  - 85
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a7/
LA  - ru
ID  - VMJ_2017_19_4_a7
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%T On approximation of almost periodic functions by some sums
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 76-85
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a7/
%G ru
%F VMJ_2017_19_4_a7
Yu. Kh. Khasanov. On approximation of almost periodic functions by some sums. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 76-85. http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a7/

[1] Marcinkewisz I., “Sur une method remarquable de soummation des series doubles de Fourier”, Collecfed papers, Warszawa, 1964, 527–538

[2] Zhizhiashvily L. V., “About Summability of Double Fourier Series”, Siberian Math. J., 8:3 (1967), 548–564 (in Russian) | Zbl

[3] Taberski R., “Abel summability of double Fourier series”, Bull. Acad. Polon. Sci. Ser. Sci. Msth. Astron. Et phys., 18:6 (1970), 307–314 | MR | Zbl

[4] Timan M. F., Gaimnazarov G., “Approximation of periodic functions of two variables by some polynomials”, Reports of the Academy of Sciences of the Republic of Tajikistan, 15:5 (1972), 6–8 (in Russian)

[5] Timan M. F., Ponomarenko V. G., “Approximation of periodic functions of two variables by Marcinkiewicz type sums”, Izvestiya Vysshikh Uchebnykh Zavedenij. Matematika, 1975, no. 9, 59–67 (in Russian)

[6] Ponomarenko V. G., “Approximation of functions, uniformly continuous on whole real plane”, Siberian Math. J., 16:1 (1975), 86–97 (in Russian) | Zbl

[7] Khasanov Yu. Kh., “Approximation of almost periodic functions of two variables”, Russian Mathematics, 54:12 (2010), 72–75 | DOI | MR | Zbl