@article{VMJ_2017_19_4_a6,
author = {M. Saburov},
title = {A note on surjective polynomial operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {70--75},
year = {2017},
volume = {19},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a6/}
}
M. Saburov. A note on surjective polynomial operators. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 70-75. http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a6/
[1] Barvinok A. I., “Problems of distance geometry and convex properties of quadratic maps”, Discrete Comput. Geom., 13:2 (1995), 189–202 | DOI | MR | Zbl
[2] Hiriart-Urruty J.-B., Torki M., “Permanently going back and forth between the “Quadratic World” and the “Convexity World” in optimization”, Appl. Math. Optim., 45 (2002), 169–184 | DOI | MR | Zbl
[3] Kolokoltsov V., Nonlinear Markov Processes and Kinetic Equations, Cambridge Univ., 2010 | DOI | MR | Zbl
[4] Polyak B. T., “Convexity of quadratic transformations and its use in Control and Optimization”, J. Optim. Theory Appl., 99 (1998), 553–583 | DOI | MR | Zbl
[5] Saburov M., “On the surjectivity of quadratic stochastic operators acting on the simplex”, Math. Notes, 99:4 (2016), 623–627 | DOI | MR | Zbl
[6] Saburov M., “Ergodicity of nonlinear Markov operators on the finite dimensional space”, Nonlinear Anal. Theory Methods, 143 (2016), 105–119 | DOI | MR | Zbl
[7] Sheriff J. L., The convexity of quadratic maps and the controllability of coupled systems, Doctoral dissertation, Harvard Univ., 2013 | MR
[8] Vershik A. M., “Quadratic forms positive on a cone and quadratic duality”, J. Soviet Math., 36:1 (1984), 39–56 | DOI | MR