@article{VMJ_2017_19_4_a4,
author = {P. K. Pandey},
title = {A numerical method for the solution of fifth order boundary value problem in ordinary differential equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {50--57},
year = {2017},
volume = {19},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a4/}
}
TY - JOUR AU - P. K. Pandey TI - A numerical method for the solution of fifth order boundary value problem in ordinary differential equations JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 50 EP - 57 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a4/ LA - en ID - VMJ_2017_19_4_a4 ER -
P. K. Pandey. A numerical method for the solution of fifth order boundary value problem in ordinary differential equations. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 50-57. http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a4/
[1] Sibley D. N., Viscoelastic Flows of PTT Fluids, Ph. D. Thesis, University of Bath, UK, 2010
[2] Davies A. R., Karageorghis A., Phillips T. N., “Spectral Galerkin methods for the primary two-point boundary-value problem in modeling viscoelastic flows”, Internat. J. Numer. Methods Eng., 26:3 (1988), 647–662 | DOI
[3] Agarwal R. P., Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, 1986 | MR | Zbl
[4] Khan M. S., Finite difference solutions of fifth order boundary value problems, Ph.D. thesis, Brunel University London, UK, 1994
[5] Caglar H. N., Caglar S. H., Twizell E. H., “The numerical solution of fifth-order boundary value problems with sixth-degree $B$-spline functions”, Appl. Math. Letters, 12:5 (1999), 25–30 | DOI | MR | Zbl
[6] Lamnii A., Mraoui H., Sbibih D., Tijini A., “Sextic spline solution of fifth order boundary value problems”, Math. Computer Simul., 77 (2008), 237–246 | DOI | MR | Zbl
[7] Wazwaz A. M., “The numerical solution of fifth-order boundary value problems by the decomposition method”, J. Comp. and Appl. Math., 136:1–2 (2001), 259–270 | DOI | MR | Zbl
[8] Karageorghis A., Davies A. R., Phillips T. N., “Spectral collocation methods for the primary two-point boundary-value problem in modelling viscoelastic flows”, Internat. J. Numer. Methods Eng., 26:4 (1988), 805–813 | DOI | Zbl
[9] Viswanadham K. N. S. K., Krishnaa P. M., Rao C. P., “Numerical Solution of Fifth Order Boundary Value Problems by Collocation Method with Sixth Order $B$-Splines”, Internat. J. Numer. Methods Eng., 8:2 (2010), 119–125 | MR
[10] Erturk V. S., “Solving nonlinear fifth order boundary value problems by differential transformation method”, Selcuk J. Appl. Math., 8:1 (2007), 45–49 | MR | Zbl
[11] Ali A., Mustafa I., Adem K., “A Comparison on Solutions of Fifth-Order Boundary Value Problems”, Appl. Math. Inf. Sci., 10:2 (2016), 755–764 | DOI
[12] Pandey P. K., “The Numerical Solution of Third Order Differential Equation Containing the First Derivative”, Neural, Parallel and Sci. Comp., 13 (2005), 297–304 | MR | Zbl
[13] Mohanty R. K., “A fourth-order finite difference method for the general one-dimensional nonlinear biharmonic problems of first kind”, J. Comp. Appl. Math., 114:2 (2000), 275–290 | DOI | MR | Zbl
[14] Mohanty R. K., Jain M. K. Pandey P. K., “Finite difference methods of order two and four for 2-D nonlinear biharmonic problems of first kind”, Int. J. Comput. Math., 61 (1996), 155–163 | DOI | MR | Zbl
[15] Varga R. S., Matrix Iterative Analysis, Second Revised and Expanded Edition, Springer-Verlag, Heidelberg, 2000 | MR | Zbl
[16] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, N. Y., 1990 | MR | Zbl
[17] Gil M. I., “Invertibility Conditions for Block Matrices and Estimates for Norms of Inverse Matrices”, Rocky Mountain J. of Math., 33:4 (2003), 1323–1335 | DOI | MR | Zbl