A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 13-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we study the pseudoparabolic equation in the three dimensional space. The equation of this form implies the presence of cylindrical or spherical symmetry that enables one to move from a three-dimensional problem to one-dimensional problem, but with degeneration. In this regard, we study the solvability and stability of solutions to boundary value problems for degenerate pseudoparabolic equation of the third order of general form with variable coefficients and third kind condition, as well as difference schemes approximating this problem on uniform grids. The main result consists in proving a priori estimates for a solution to both the differential and difference problems by means of the method of energy inequalities. The obtained inequalities imply stability of the solution relative to initial data and right side. Because of the linearity of the considered problems these inequalities allow us to state the convergence of the approximate solution to the exact solution of the considered differential problem under the assumption of the existence of the solutions in the class of sufficiently smooth functions. On the test examples the numerical experiments are performed confirming the theoretical results obtained in the work.
@article{VMJ_2017_19_4_a1,
     author = {M. KH. Beshtokov and V. Z. Kanchukoyev and F. A. Erzhibova},
     title = {A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {13--26},
     year = {2017},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a1/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
AU  - V. Z. Kanchukoyev
AU  - F. A. Erzhibova
TI  - A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 13
EP  - 26
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a1/
LA  - ru
ID  - VMJ_2017_19_4_a1
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%A V. Z. Kanchukoyev
%A F. A. Erzhibova
%T A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 13-26
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a1/
%G ru
%F VMJ_2017_19_4_a1
M. KH. Beshtokov; V. Z. Kanchukoyev; F. A. Erzhibova. A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 4, pp. 13-26. http://geodesic.mathdoc.fr/item/VMJ_2017_19_4_a1/

[1] Dzektser E. S., “Equations of motion of free-surface underground water in layered media”, Doklady Mathematics, 220:3 (1975), 540–543 (in Russian) | Zbl

[2] Rubinshtein L. I., “On heat propagation in heterogeneous media”, Izv. Akad. Nauk SSSR, Ser. Geogr., 12:1 (1948), 27–45 (in Russian)

[3] Ting T. W., “A cooling process according to two-temperature theory of heat conduction”, J. Math. Anal. Appl., 45:9 (1974), 23–31 | DOI | MR | Zbl

[4] Hallaire M., L'eau et la production vegetable, No 9, Institut National de la Recherche Agronomique, 1964

[5] Chudnovskii A. F., Thermal Physics of Soils, Nauka, M., 1976, 352 pp. (in Russian)

[6] Barenblat G. I., Zheltov Yu. P., Kochina I. N., “Basic concept in the theory of seepage of homogeneous liquids in fissured rocks”, J. Appl. Math. Mech., 25:5 (1960), 852–864 (in Russian)

[7] Beshtokov M. Kh., “Riemann function method and finite difference method for solving a nonlocal boundary value problem for a third-order hyperbolic equation”, Izvestiya Vysshikh Uchebnykh Zavedenii. Severo-Kavkaz. Reg., 2007, no. 5, 6–9 (in Russian)

[8] Beshtokov M. Kh., “Finite-difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation”, Differ. Equations, 49:9 (2013), 1134–141 | DOI | MR | Zbl

[9] Beshtokov M. Kh., “On a boundary value problem for a third-order pseudoparabolic equation with a nonlocal condition. I”, Izvestiya Vysshikh Uchebnykh Zavedenii. Severo-Kavkaz. Reg., 2013, no. 1, 5–10 (in Russian)

[10] Beshtokov M. Kh., “A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation”, Comput. Math. Math. Phys., 54:9 (2014), 1441–1458 | DOI | MR | Zbl

[11] Samarskii A. A., Theory of Difference Schemes, Nauka, M., 1983, 616 pp. (in Russian)

[12] Olisaev E. G., Raznostnye Metody Reshenija Nelokal'Nyh Kraevyh Zadach Dlja Uravnenija Parabolicheskogo Tipa s Vyrozhdeniem, Candidate's Dis. In Math. And Physics, Russ. State Library, M., 2003 (in Russian)

[13] Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Nauka, M., 1973, 407 pp. (in Russian)

[14] Andreev V. B., “On the convergence of difference schemes approximating the second and third boundary value problems for elliptic equations”, USSR Comput. Math. Math. Phys., 8:6 (1968), 44–62 | DOI | MR | Zbl

[15] Samarskii A. A., Gulin A. V., Stability of Finite Difference Schemes, Nauka, M., 1973, 416 pp. (in Russian)