One-sided integral operators with homogeneous kernels in grand Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 70-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions and necessary conditions for the kernel and the grandiser are obtained under which one-sided integral operators with homogeneous kernels are bounded in the grand Lebesgue spaces on $\mathbb{R}$ and $\mathbb{R}^n$. Two-sided estimates for grand norms of these operators are also obtained. In addition, in the case of a radial kernel, we obtain two-sided estimates for the norms of multidimensional operators in terms of spherical means and show that this result is stronger than the inequalities for norms of operators with a nonradial kernel.
@article{VMJ_2017_19_3_a7,
author = {S. M. Umarkhadzhiev},
title = {One-sided integral operators with homogeneous kernels in grand {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {70--82},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a7/}
}
TY - JOUR AU - S. M. Umarkhadzhiev TI - One-sided integral operators with homogeneous kernels in grand Lebesgue spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 70 EP - 82 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a7/ LA - ru ID - VMJ_2017_19_3_a7 ER -
S. M. Umarkhadzhiev. One-sided integral operators with homogeneous kernels in grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 70-82. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a7/