The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 59-69

Voir la notice de l'article provenant de la source Math-Net.Ru

For the differential equation mentioned in the title of the article, the solvability of the Cauchy problem in the space of continuous functions on the whole real axis by reducing to an abstract Cauchy problem in a Banach space is studied. An explicit form of the solution of the corresponding linear equation is found. The time interval for the existence of the classical solution of the Cauchy problem for a nonlinear equation is established and an estimate of the norm of this local solution is obtained. The conditions for the existence of a global solution and the destruction of the solution on a finite interval are considered.
@article{VMJ_2017_19_3_a6,
     author = {Kh. G. Umarov},
     title = {The {Cauchy} problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/}
}
TY  - JOUR
AU  - Kh. G. Umarov
TI  - The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 59
EP  - 69
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/
LA  - ru
ID  - VMJ_2017_19_3_a6
ER  - 
%0 Journal Article
%A Kh. G. Umarov
%T The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 59-69
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/
%G ru
%F VMJ_2017_19_3_a6
Kh. G. Umarov. The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 59-69. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/