The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 59-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the differential equation mentioned in the title of the article, the solvability of the Cauchy problem in the space of continuous functions on the whole real axis by reducing to an abstract Cauchy problem in a Banach space is studied. An explicit form of the solution of the corresponding linear equation is found. The time interval for the existence of the classical solution of the Cauchy problem for a nonlinear equation is established and an estimate of the norm of this local solution is obtained. The conditions for the existence of a global solution and the destruction of the solution on a finite interval are considered.
@article{VMJ_2017_19_3_a6,
     author = {Kh. G. Umarov},
     title = {The {Cauchy} problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {59--69},
     year = {2017},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/}
}
TY  - JOUR
AU  - Kh. G. Umarov
TI  - The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 59
EP  - 69
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/
LA  - ru
ID  - VMJ_2017_19_3_a6
ER  - 
%0 Journal Article
%A Kh. G. Umarov
%T The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 59-69
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/
%G ru
%F VMJ_2017_19_3_a6
Kh. G. Umarov. The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 59-69. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a6/

[1] Ostrovskii L. A., Potapov A. I., Vvedenie v teoriyu modulirovannykh voln, Fizmatlit, M., 2003, 400 pp.

[2] Erofeev V. I., Kazhaev V. V., Semerikova N. P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost, Fizmatlit, M., 2002, 208 pp.

[3] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.

[4] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp.

[5] Vasilev V. V., Krein S. G., Piskarev S. I., “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhniki. Ser. Mat. analiz, 28, VINITI, 1990, 87–202 | Zbl

[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka. Gl. red. fiz.-mat. lit., M., 1983, 752 pp.

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka. Gl. red. fiz.-mat. lit., M., 1986, 800 pp.

[8] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp.

[9] Travis C. C., Webb G. F., “Cosine families and abstract nonlinear second order differential equations”, Acta Math. Acad. Sci. Hungar., 32 (1978), 75–96 | DOI | MR | Zbl

[10] Appell J., Zabreiko P. P., Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990, 320 pp. | MR | Zbl

[11] Dragomir S. S., Some Gronwall Type Inequalities and Applications, Melbourne City MC, 2002, 193 pp. | MR

[12] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Roy. Soc., 272, London, 1972, 47–78 | DOI | MR | Zbl

[13] Korpusov M. O., Sveshnikov A. G., Yushkov E. V., Metody teorii razrusheniya reshenii nelineinykh uravnenii matematicheskoi fiziki, Izd-vo fizicheskogo fakulteta MGU, M., 2014, 364 pp.