A boundary value problem for higher order elliptic equations in many connected domain on the plane
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the elliptic equation of $2l$th order with constant (and leading) coefficients boundary value a problem with normal derivatives of the $(k_j-1)-$order, $j=1,\ldots,l$ considered. Here $1\le k_1 <\ldots< k_l\le 2l$. When $k_j=j$ it moves to the Dirichlet problem, and when $k_j = j + 1$ it corresponds to the Neumann problem. The sufficient condition of the Fredholm problem and index formula are given.
@article{VMJ_2017_19_3_a5,
     author = {A. P. Soldatov},
     title = {A boundary value problem for higher order elliptic equations in many connected domain on the plane},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {51--58},
     year = {2017},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A boundary value problem for higher order elliptic equations in many connected domain on the plane
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 51
EP  - 58
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/
LA  - ru
ID  - VMJ_2017_19_3_a5
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A boundary value problem for higher order elliptic equations in many connected domain on the plane
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 51-58
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/
%G ru
%F VMJ_2017_19_3_a5
A. P. Soldatov. A boundary value problem for higher order elliptic equations in many connected domain on the plane. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/

[1] Bitsadze A. V., “K zadache Neimana dlya garmonicheskikh funktsii”, Dokl. AN SSSR, 311:1 (1990), 11–13 | Zbl

[2] Malakhova N. A., Soldatov A. P., “Ob odnoi kraevoi zadache dlya ellipticheskogo uravneniya vysokogo poryadka”, Dif. uravneniya, 44:8 (2008), 1077–1083 | Zbl

[3] Koshanov B., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya na ploskosti”, Dif. uravneniya, 52:12 (2016), 1666–1681 | DOI | Zbl

[4] Vaschenko O. V., Soldatov A. P., “Integralnoe predstavlenie reshenii obobschennoi sistemy Beltrami”, Nauch. vedomosti Belgorod. gos. un-ta. Ser. Informatika i prikladnaya matematika, 1(21):6 (2006), 3–6

[5] Soldatov A. P., “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi”, Sovremennaya matematika fundamentalnye napravleniya, 63 (2016), 1–179

[6] Soldatov A. P., “Hyperanalytic functions and their applications”, J. Math. Sci., 17 (2004), 1–111

[7] Abapolova E. A., Soldatov A. P., “K teorii singulyarnykh integralnykh uravnenii na gladkom konture”, Nauch. vedomosti Belgorod. gos. un-ta, 5(76):18 (2010), 6–20

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp.

[9] Soldatov A. P., “Metod teorii funktsii v kraevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AH SSSR. Cep. Matematika, 55:5 (1991), 1070–1100

[10] Soldatov A. P., “Zadacha Shvartsa dlya funktsii, analiticheskikh po Duglisu”, Sovremennaya matematika i ee prilozheniya, 67 (2010), 99–102

[11] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970