A boundary value problem for higher order elliptic equations in many connected domain on the plane
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58
Voir la notice de l'article provenant de la source Math-Net.Ru
For the elliptic equation of $2l$th order with constant (and leading) coefficients boundary value a problem with normal derivatives of the $(k_j-1)-$order, $j=1,\ldots,l$ considered. Here $1\le k_1 \ldots k_l\le 2l$. When $k_j=j$ it moves to the Dirichlet problem, and when $k_j = j + 1$ it corresponds to the Neumann problem. The sufficient condition of the Fredholm problem and index formula are given.
@article{VMJ_2017_19_3_a5,
author = {A. P. Soldatov},
title = {A boundary value problem for higher order elliptic equations in many connected domain on the plane},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {51--58},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/}
}
TY - JOUR AU - A. P. Soldatov TI - A boundary value problem for higher order elliptic equations in many connected domain on the plane JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 51 EP - 58 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/ LA - ru ID - VMJ_2017_19_3_a5 ER -
A. P. Soldatov. A boundary value problem for higher order elliptic equations in many connected domain on the plane. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/