A boundary value problem for higher order elliptic equations in many connected domain on the plane
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58

Voir la notice de l'article provenant de la source Math-Net.Ru

For the elliptic equation of $2l$th order with constant (and leading) coefficients boundary value a problem with normal derivatives of the $(k_j-1)-$order, $j=1,\ldots,l$ considered. Here $1\le k_1 \ldots k_l\le 2l$. When $k_j=j$ it moves to the Dirichlet problem, and when $k_j = j + 1$ it corresponds to the Neumann problem. The sufficient condition of the Fredholm problem and index formula are given.
@article{VMJ_2017_19_3_a5,
     author = {A. P. Soldatov},
     title = {A boundary value problem for higher order elliptic equations in many connected domain on the plane},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {51--58},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A boundary value problem for higher order elliptic equations in many connected domain on the plane
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 51
EP  - 58
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/
LA  - ru
ID  - VMJ_2017_19_3_a5
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A boundary value problem for higher order elliptic equations in many connected domain on the plane
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 51-58
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/
%G ru
%F VMJ_2017_19_3_a5
A. P. Soldatov. A boundary value problem for higher order elliptic equations in many connected domain on the plane. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 51-58. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a5/