@article{VMJ_2017_19_3_a4,
author = {A. G. Kusraev and B. B. Tasoev},
title = {Maximal quasi-normed extension of quasi-normed lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {41--50},
year = {2017},
volume = {19},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/}
}
A. G. Kusraev; B. B. Tasoev. Maximal quasi-normed extension of quasi-normed lattices. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/
[1] Abramovich Yu. A., “On maximal normed extension of a semi-ordered normed spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 3 (1970), 7–17
[2] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Graduate Stud. in Math., 50, Amer. Math. Soc., Providence, R. I., 2002, iv+530 pp. | MR | Zbl
[3] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | Zbl
[4] Calabuig J. M., Delgado O., Juan M. A., Sánchez Pérez E. A., “On the Banach lattice structure of $L^1_w$ of a vector measure on a $\delta$-ring”, Collect. Math., 65 (2014), 67–85 | DOI | MR | Zbl
[5] Curbera G. P., Ricker W. J., “Vector measures, integration, applications”, Positivity, Trends Math., Birkhäuser, Basel, 2007, 127–160 | DOI | MR | Zbl
[6] Hyers D. H., “A note on linear topological spaces”, Bull. Amer. Math. Soc., 44:2 (1938), 76–80 | DOI | MR
[7] Juan A. M., Sánchez–Pérez E. A., “Maurey–Rosenthal domination for abstract Banach lattices”, J. Ineq. and Appl., 213 (2013), 1–12 | MR
[8] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgow Math. J., 25 (1984), 141–142 | DOI | MR
[9] Kalton N. J., “Quasi-Banach spaces”, Handbook of the Geometry of Banach Spaces, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam a. o., 2003, 1118–1130 | MR
[10] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi-Banach lattices”, Dokl. Math., 474 (2017), 15–18 | MR | Zbl
[11] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of vector lattices”, J. Math. Anal. Appl., 455 (2017), 554–568 | DOI | MR | Zbl
[12] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi–Banach lattices”, J. Math. Anal. Appl. (to appear)
[13] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North-Holland, Amsterdam–London, 1971, 514 pp. | MR | Zbl
[14] Lewis D. R., “On integration and summability in vector spaces”, Illinois J. Math., 16 (1972), 294–307 | MR | Zbl
[15] Maligranda L., “Type, cotype and convexity properties of quasi-Banach spaces”, Proc. of the International Symposium on Banach and Function Spaces Kitakyushu (Japan, 2003), 83–120 | MR | Zbl
[16] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. II. Pettis integration”, Adv. Math., 75 (1989), 121–167 | DOI | MR | Zbl
[17] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, xvi+395 pp. | MR | Zbl
[18] Okada S., Ricker W. J., Sánchez-Pérez E. A., Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Oper. Theory Adv. Appl., 180, Birkhäuser, Basel, 2008 | MR | Zbl
[19] Pietsch A., Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978 ; North-Holland, Amsterdam–London–N. Y.–Tokyo, 1980 | MR | Zbl | Zbl
[20] Sanchez Perez E. A., Tradacete P., “Bartle–Dunford–Schwartz integration for positive vector measures and representation of quasi-Banach lattices”, J. Nonlin. and Conv. Anal., 17:2 (2016), 387–402 | MR | Zbl
[21] Veksler A. I., “On realization of Archimedean $K$-lineals”, Sib. Math. J., 3:1 (1962), 7–16 | MR | Zbl
[22] Veksler A. I., “The concept of a linear lattice which is normal in itself, and certain applications of this concept to the theory of linear and linear normed lattices”, Isv. Vuzov. Math., 4 (1966), 13–22 | MR | Zbl
[23] Veksler A. I., “Interval completeness and intervally complete normability of $KN$-lineals”, Isv. Vuzov. Math., 1970, no. 4, 36–46 | MR | Zbl
[24] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, M., 1961 (in Russian) | MR | Zbl