Maximal quasi-normed extension of quasi-normed lattices
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 41-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is to extend the Abramovich's construction of a maximal normed extension of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension $X^\varkappa$ of a Dedekind complete quasi-normed lattice $X$ with the weak $\sigma$-Fatou property is a quasi-Banach lattice if and only if $X$ is intervally complete. Moreover, $X^\varkappa$ has the Fatou and the Levi property provided that $X$ is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying this construction to the definition of a space of weakly integrable functions with respect to a measure taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not work in the quasi-Banach setting.
@article{VMJ_2017_19_3_a4,
     author = {A. G. Kusraev and B. B. Tasoev},
     title = {Maximal quasi-normed extension of quasi-normed lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - B. B. Tasoev
TI  - Maximal quasi-normed extension of quasi-normed lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 41
EP  - 50
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/
LA  - en
ID  - VMJ_2017_19_3_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A B. B. Tasoev
%T Maximal quasi-normed extension of quasi-normed lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 41-50
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/
%G en
%F VMJ_2017_19_3_a4
A. G. Kusraev; B. B. Tasoev. Maximal quasi-normed extension of quasi-normed lattices. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/