Maximal quasi-normed extension of quasi-normed lattices
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 41-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this article is to extend the Abramovich's construction of a maximal normed extension of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension $X^\varkappa$ of a Dedekind complete quasi-normed lattice $X$ with the weak $\sigma$-Fatou property is a quasi-Banach lattice if and only if $X$ is intervally complete. Moreover, $X^\varkappa$ has the Fatou and the Levi property provided that $X$ is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying this construction to the definition of a space of weakly integrable functions with respect to a measure taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not work in the quasi-Banach setting.
@article{VMJ_2017_19_3_a4,
     author = {A. G. Kusraev and B. B. Tasoev},
     title = {Maximal quasi-normed extension of quasi-normed lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--50},
     year = {2017},
     volume = {19},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - B. B. Tasoev
TI  - Maximal quasi-normed extension of quasi-normed lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 41
EP  - 50
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/
LA  - en
ID  - VMJ_2017_19_3_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A B. B. Tasoev
%T Maximal quasi-normed extension of quasi-normed lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 41-50
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/
%G en
%F VMJ_2017_19_3_a4
A. G. Kusraev; B. B. Tasoev. Maximal quasi-normed extension of quasi-normed lattices. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a4/

[1] Abramovich Yu. A., “On maximal normed extension of a semi-ordered normed spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 3 (1970), 7–17

[2] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Graduate Stud. in Math., 50, Amer. Math. Soc., Providence, R. I., 2002, iv+530 pp. | MR | Zbl

[3] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | Zbl

[4] Calabuig J. M., Delgado O., Juan M. A., Sánchez Pérez E. A., “On the Banach lattice structure of $L^1_w$ of a vector measure on a $\delta$-ring”, Collect. Math., 65 (2014), 67–85 | DOI | MR | Zbl

[5] Curbera G. P., Ricker W. J., “Vector measures, integration, applications”, Positivity, Trends Math., Birkhäuser, Basel, 2007, 127–160 | DOI | MR | Zbl

[6] Hyers D. H., “A note on linear topological spaces”, Bull. Amer. Math. Soc., 44:2 (1938), 76–80 | DOI | MR

[7] Juan A. M., Sánchez–Pérez E. A., “Maurey–Rosenthal domination for abstract Banach lattices”, J. Ineq. and Appl., 213 (2013), 1–12 | MR

[8] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgow Math. J., 25 (1984), 141–142 | DOI | MR

[9] Kalton N. J., “Quasi-Banach spaces”, Handbook of the Geometry of Banach Spaces, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam a. o., 2003, 1118–1130 | MR

[10] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi-Banach lattices”, Dokl. Math., 474 (2017), 15–18 | MR | Zbl

[11] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of vector lattices”, J. Math. Anal. Appl., 455 (2017), 554–568 | DOI | MR | Zbl

[12] Kusraev A. G., Tasoev B. B., “Kantorovich–Wright integration and representation of quasi–Banach lattices”, J. Math. Anal. Appl. (to appear)

[13] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North-Holland, Amsterdam–London, 1971, 514 pp. | MR | Zbl

[14] Lewis D. R., “On integration and summability in vector spaces”, Illinois J. Math., 16 (1972), 294–307 | MR | Zbl

[15] Maligranda L., “Type, cotype and convexity properties of quasi-Banach spaces”, Proc. of the International Symposium on Banach and Function Spaces Kitakyushu (Japan, 2003), 83–120 | MR | Zbl

[16] Masani P. R., Niemi H., “The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. II. Pettis integration”, Adv. Math., 75 (1989), 121–167 | DOI | MR | Zbl

[17] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, xvi+395 pp. | MR | Zbl

[18] Okada S., Ricker W. J., Sánchez-Pérez E. A., Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Oper. Theory Adv. Appl., 180, Birkhäuser, Basel, 2008 | MR | Zbl

[19] Pietsch A., Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978 ; North-Holland, Amsterdam–London–N. Y.–Tokyo, 1980 | MR | Zbl | Zbl

[20] Sanchez Perez E. A., Tradacete P., “Bartle–Dunford–Schwartz integration for positive vector measures and representation of quasi-Banach lattices”, J. Nonlin. and Conv. Anal., 17:2 (2016), 387–402 | MR | Zbl

[21] Veksler A. I., “On realization of Archimedean $K$-lineals”, Sib. Math. J., 3:1 (1962), 7–16 | MR | Zbl

[22] Veksler A. I., “The concept of a linear lattice which is normal in itself, and certain applications of this concept to the theory of linear and linear normed lattices”, Isv. Vuzov. Math., 4 (1966), 13–22 | MR | Zbl

[23] Veksler A. I., “Interval completeness and intervally complete normability of $KN$-lineals”, Isv. Vuzov. Math., 1970, no. 4, 36–46 | MR | Zbl

[24] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, M., 1961 (in Russian) | MR | Zbl